Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

N6-methyladenosine (m6A) methylation is co-transcriptionally deposited on mRNA, but a possible role of m6A on transcription remains poorly understood. Here, we demonstrate that the METTL3/METTL14/WTAP m6A methyltransferase complex (MTC) is localized to many promoters and enhancers and deposits the m6A modification on nascent transcripts, including pre-mRNAs, promoter upstream transcripts (PROMPTs), and enhancer RNAs. PRO-seq analyses demonstrate that nascent RNAs originating from both promoters and enhancers are significantly decreased in the METTL3-depleted cells. Furthermore, genes targeted by the Integrator complex for premature termination are depleted of METTL3, suggesting a potential antagonistic relationship between METTL3 and Integrator. Consistently, we found the Integrator complex component INTS11 elevated at promoters and enhancers upon loss of MTC or nuclear m6A binders. Taken together, our findings suggest that MTC-mediated m6A modification protects nascent RNAs from Integrator-mediated termination and promotes productive transcription, thus unraveling an unexpected layer of gene regulation imposed by RNA m6A modification.

Original publication




Journal article


Molecular cell

Publication Date





1156 - 1168.e7


Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 201399, China.


Chromatin, Methyltransferases, RNA, RNA, Messenger, Methylation