Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<div>Abstract<p>Monoclonal antibodies (mAbs) blocking immune checkpoints such as programmed death ligand 1 (PD-L1) have yielded strong clinical benefits in many cancer types. Still, the current limitations are the lack of clinical response in a majority of patients and the development of immune-related adverse events in some. As an alternative to PD-L1–specific antibody injection, we have developed an approach based on the engineering of tumor-targeting T cells to deliver intratumorally an anti–PD-L1 nanobody. In the MC38-OVA model, our strategy enhanced tumor control as compared with injection of PD-L1–specific antibody combined with adoptive transfer of tumor-targeting T cells. As a possible explanation for this, we demonstrated that PD-L1–specific antibody massively occupied PD-L1 in the periphery but failed to penetrate to PD-L1–expressing cells at the tumor site. In sharp contrast, locally delivered anti–PD-L1 nanobody improved PD-L1 blocking at the tumor site while avoiding systemic exposure. Our approach appears promising to overcome the limitations of immunotherapy based on PD-L1–specific antibodies.</p></div>

Original publication

DOI

10.1158/2326-6066.c.6550608.v1

Type

Other

Publication Date

04/04/2023