Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The scratch assay is an in vitro technique used to assess the contribution of molecular and cellular mechanisms to cell migration. The assay can also be used to evaluate therapeutic compounds before clinical use. Current quantification methods of scratch assays deal poorly with irregular cell-free areas and crooked leading edges which are features typically present in the experimental data. We introduce a new migration quantification method, called ‘monolayer edge velocimetry’, that permits analysis of low-quality experimental data and better statistical classification of migration rates than standard quantification methods. The new method relies on quantifying the horizontal component of the cell monolayer velocity across the leading edge. By performing a classification test on in silico data, we show that the method exhibits significantly lower statistical errors than standard methods. When applied to in vitro data, our method outperforms standard methods by detecting differences in the migration rates between different cell groups that the other methods could not detect. Application of this new method will enable quantification of migration rates from in vitro scratch assay data that cannot be analysed using existing methods.

Original publication

DOI

10.1098/rsif.2018.0709

Type

Journal article

Journal

Journal of The Royal Society Interface

Publisher

The Royal Society

Publication Date

02/2019

Volume

16

Pages

20180709 - 20180709