Abstract folders 940x150 crop scale160311n_0845

Recent Publications

A selection of recent publications from Ludwig Oxford researchers.


Gomes B, Driessens G, Bartlett D, Cai D, Cauwenberghs S, Crosignani S, Dalvie D, Denies S, Dillon CP, Fantin VR et al. 2018. Characterization of the Selective Indoleamine 2,3-Dioxygenase-1 (IDO1) Catalytic Inhibitor EOS200271/PF-06840003 Supports IDO1 as a Critical Resistance Mechanism to PD-(L)1 Blockade Therapy. Mol Cancer Ther, 17 (12), pp. 2530-2542. | Show Abstract | Read more

Tumors use indoleamine 2,3-dioxygenase-1 (IDO1) as a major mechanism to induce an immunosuppressive microenvironment. IDO1 expression is upregulated in many cancers and considered to be a resistance mechanism to immune checkpoint therapies. IDO1 is induced in response to inflammatory stimuli such as IFNγ and promotes immune tolerance by depleting tryptophan and producing tryptophan catabolites, including kynurenine, in the tumor microenvironment. This leads to effector T-cell anergy and enhanced Treg function through upregulation of FoxP3. As a nexus for the induction of key immunosuppressive mechanisms, IDO1 represents an important immunotherapeutic target in oncology. Here, we report the identification and characterization of the novel selective, orally bioavailable IDO1 inhibitor EOS200271/PF-06840003. It reversed IDO1-induced T-cell anergy in vitro In mice carrying syngeneic tumor grafts, PF-06840003 reduced intratumoral kynurenine levels by over 80% and inhibited tumor growth both in monotherapy and, with an increased efficacy, in combination with antibodies blocking the immune checkpoint ligand PD-L1. We demonstrate that anti-PD-L1 therapy results in increased IDO1 metabolic activity thereby providing additional mechanistic rationale for combining PD-(L)1 blockade with IDO1 inhibition in cancer immunotherapies. Supported by these preclinical data and favorable predicted human pharmacokinetic properties of PF-06840003, a phase I open-label, multicenter clinical study (NCT02764151) has been initiated.

Wang Y, Zhong S, Schofield CJ, Ratcliffe PJ, Lu X. 2018. Nuclear entry and export of FIH are mediated by HIF1α and exportin1, respectively. J Cell Sci, 131 (22), pp. jcs219782-jcs219782. | Citations: 1 (Web of Science Lite) | Show Abstract | Read more

Hypoxia plays a crucial role at cellular and physiological levels in all animals. The responses to chronic hypoxia are, at least substantially, orchestrated by activation of the hypoxia inducible transcription factors (HIFs), whose stability and subsequent transcriptional activation are regulated by HIF hydroxylases. Factor inhibiting HIF (FIH), initially isolated as a HIFα interacting protein following a yeast two-hybrid screen, is an asparaginyl hydroxylase that negatively regulates transcriptional activation by HIF. This study aimed to define the mechanisms that govern transitions of FIH between the nucleus and cytoplasm. We report that FIH accumulates in the nucleus within a short time window during hypoxia treatment. We provide evidence, based on the application of genetic interventions and small molecule inhibition of the HIF hydroxylases, that the nuclear localization of FIH is governed by two opposing processes: nuclear entry by 'coupling' with HIF1α for importin β1-mediated nuclear import and active export via a Leptomycin B-sensitive exportin1-dependent pathway.This article has an associated First Person interview with the first author of the paper.

Zhu J, Petit P-F, Van den Eynde BJ. 2018. Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism. Cancer Immunol Immunother, | Show Abstract | Read more

Immunotherapy based on checkpoint inhibitors is providing substantial clinical benefit, but only to a minority of cancer patients. The current priority is to understand why the majority of patients fail to respond. Besides T-cell dysfunction, T-cell apoptosis was reported in several recent studies as a relevant mechanism of tumoral immune resistance. Several death receptors (Fas, DR3, DR4, DR5, TNFR1) can trigger apoptosis when activated by their respective ligands. In this review, we discuss the immunomodulatory role of the main death receptors and how these are shaping the tumor microenvironment, with a focus on Fas and its ligand. Fas-mediated apoptosis of T cells has long been known as a mechanism allowing the contraction of T-cell responses to prevent immunopathology, a phenomenon known as activation-induced cell death, which is triggered by induction of Fas ligand (FasL) expression on T cells themselves and qualifies as an immune checkpoint mechanism. Recent evidence indicates that other cells in the tumor microenvironment can express FasL and trigger apoptosis of tumor-infiltrating lymphocytes (TIL), including endothelial cells and myeloid-derived suppressor cells. The resulting disappearance of TIL prevents anti-tumor immunity and may in fact contribute to the absence of TIL that is typical of "cold" tumors that fail to respond to immunotherapy. Interfering with the Fas-FasL pathway in the tumor microenvironment has the potential to increase the efficacy of cancer immunotherapy.

Payne S, De Val S, Neal A. 2018. Endothelial-Specific Cre Mouse Models. Arterioscler Thromb Vasc Biol, 38 (11), pp. 2550-2561. | Citations: 1 (Web of Science Lite) | Show Abstract | Read more

The field of vascular biology has gained enormous insight from the use of Cre and inducible Cre mouse models to temporally and spatially manipulate gene expression within the endothelium. Models are available to constitutively or inducibly modulate gene expression in all or a specified subset of endothelial cells. However, caution should be applied to both the selection of allele and the analysis of resultant phenotype: many similarly named Cre models have divergent activity patterns while ectopic or inconsistent Cre or inducible Cre expression can dramatically affect results. In an effort to disambiguate previous data and to provide a resource to aid appropriate experimental design, here we summarize what is known about Cre recombinase activity in the most widely used endothelial-specific Cre and Cre/ERT2 mouse models.

Lopes A, Vanvarenberg K, Kos Š, Lucas S, Colau D, Van den Eynde B, Préat V, Vandermeulen G. 2018. Combination of immune checkpoint blockade with DNA cancer vaccine induces potent antitumor immunity against P815 mastocytoma. Sci Rep, 8 (1), pp. 15732. | Citations: 1 (Scopus) | Show Abstract | Read more

DNA vaccination against cancer has become a promising strategy for inducing a specific and long-lasting antitumor immunity. However, DNA vaccines fail to generate potent immune responses when used as a single therapy. To enhance their activity into the tumor, a DNA vaccine against murine P815 mastocytoma was combined with antibodies directed against the immune checkpoints CTLA4 and PD1. The combination of these two strategies delayed tumor growth and enhanced specific antitumor immune cell infiltration in comparison to the corresponding single therapies. The combination also promoted IFNg, IL12 and granzyme B production in the tumor microenvironment and decreased the formation of liver metastasis in a very early phase of tumor development, enabling 90% survival. These results underline the complementarity of DNA vaccination and immune checkpoint blockers in inducing a potent immune response, by exploiting the generation of antigen-specific T cells by the vaccine and the ability of immune checkpoint blockers to enhance T cell activity and infiltration in the tumor. These findings suggest how and why a rational combination therapy can overcome the limits of DNA vaccination but could also allow responses to immune checkpoint blockers in a larger proportion of subjects.

Owen RP, White MJ, Severson DT, Braden B, Bailey A, Goldin R, Wang LM, Ruiz-Puig C, Maynard ND, Green A et al. 2018. Single cell RNA-seq reveals profound transcriptional similarity between Barrett's oesophagus and oesophageal submucosal glands. Nat Commun, 9 (1), pp. 4261. | Show Abstract | Read more

Barrett's oesophagus is a precursor of oesophageal adenocarcinoma. In this common condition, squamous epithelium in the oesophagus is replaced by columnar epithelium in response to acid reflux. Barrett's oesophagus is highly heterogeneous and its relationships to normal tissues are unclear. Here we investigate the cellular complexity of Barrett's oesophagus and the upper gastrointestinal tract using RNA-sequencing of single cells from multiple biopsies from six patients with Barrett's oesophagus and two patients without oesophageal pathology. We find that cell populations in Barrett's oesophagus, marked by LEFTY1 and OLFM4, exhibit a profound transcriptional overlap with oesophageal submucosal gland cells, but not with gastric or duodenal cells. Additionally, SPINK4 and ITLN1 mark cells that precede morphologically identifiable goblet cells in colon and Barrett's oesophagus, potentially aiding the identification of metaplasia. Our findings reveal striking transcriptional relationships between normal tissue populations and cells in a premalignant condition, with implications for clinical practice.

Motnenko A, Liang C-C, Yang D, Lopez-Martinez D, Yoshikawa Y, Zhan B, Ward KE, Tian J, Haas W, Spingardi P et al. 2018. Identification of UHRF2 as a novel DNA interstrand crosslink sensor protein. PLoS Genet, 14 (10), pp. e1007643. | Show Abstract | Read more

The Fanconi Anemia (FA) pathway is important for repairing interstrand crosslinks (ICLs) between the Watson-Crick strands of the DNA double helix. An initial and essential stage in the repair process is the detection of the ICL. Here, we report the identification of UHRF2, a paralogue of UHRF1, as an ICL sensor protein. UHRF2 is recruited to ICLs in the genome within seconds of their appearance. We show that UHRF2 cooperates with UHRF1, to ensure recruitment of FANCD2 to ICLs. A direct protein-protein interaction is formed between UHRF1 and UHRF2, and between either UHRF1 and UHRF2, and FANCD2. Importantly, we demonstrate that the essential monoubiquitination of FANCD2 is stimulated by UHRF1/UHRF2. The stimulation is mediating by a retention of FANCD2 on chromatin, allowing for its monoubiquitination by the FA core complex. Taken together, we uncover a mechanism of ICL sensing by UHRF2, leading to FANCD2 recruitment and retention at ICLs, in turn facilitating activation of FANCD2 by monoubiquitination.

Vigneron N, Ferrari V, Van den Eynde BJ, Cresswell P, Leonhardt RM. 2018. Cytosolic Processing Governs TAP-Independent Presentation of a Critical Melanoma Antigen. J Immunol, 201 (7), pp. 1875-1888. | Show Abstract | Read more

Cancer immunotherapy has been flourishing in recent years with remarkable clinical success. But as more patients are treated, a shadow is emerging that has haunted other cancer therapies: tumors develop resistance. Resistance is often caused by defects in the MHC class I Ag presentation pathway critical for CD8 T cell-mediated tumor clearance. TAP and tapasin, both key players in the pathway, are frequently downregulated in human cancers, correlating with poor patient survival. Reduced dependence on these factors may promote vaccine efficiency by limiting immune evasion. In this study, we demonstrate that PMEL209-217, a promising phase 3 trial-tested antimelanoma vaccine candidate, is robustly presented by various TAP- and/or tapasin-deficient cell lines. This striking characteristic may underlie its potency as a vaccine. Surprisingly, cytosolic proteasomes generate the peptide even for TAP-independent presentation, whereas tripeptidyl peptidase 2 (TPP2) efficiently degrades the epitope. Consequently, inhibiting TPP2 substantially boosts PMEL209-217 presentation, suggesting a possible strategy to improve the therapeutic efficacy of the vaccine.

Ryzhakov G, West NR, Franchini F, Clare S, Ilott NE, Sansom SN, Bullers SJ, Pearson C, Costain A, Vaughan-Jackson A et al. 2018. Alpha kinase 1 controls intestinal inflammation by suppressing the IL-12/Th1 axis. Nat Commun, 9 (1), pp. 3797. | Citations: 2 (Scopus) | Show Abstract | Read more

Inflammatory bowel disease (IBD) are heterogenous disorders of the gastrointestinal tract caused by a spectrum of genetic and environmental factors. In mice, overlapping regions of chromosome 3 have been associated with susceptibility to IBD-like pathology, including a locus called Hiccs. However, the specific gene that controls disease susceptibility remains unknown. Here we identify a Hiccs locus gene, Alpk1 (encoding alpha kinase 1), as a potent regulator of intestinal inflammation. In response to infection with the commensal pathobiont Helicobacter hepaticus (Hh), Alpk1-deficient mice display exacerbated interleukin (IL)-12/IL-23 dependent colitis characterized by an enhanced Th1/interferon(IFN)-γ response. Alpk1 controls intestinal immunity via the hematopoietic system and is highly expressed by mononuclear phagocytes. In response to Hh, Alpk1-/- macrophages produce abnormally high amounts of IL-12, but not IL-23. This study demonstrates that Alpk1 promotes intestinal homoeostasis by regulating the balance of type 1/type 17 immunity following microbial challenge.

Ngeow KC, Friedrichsen HJ, Li L, Zeng Z, Andrews S, Volpon L, Brunsdon H, Berridge G, Picaud S, Fischer R et al. 2018. BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. Proc Natl Acad Sci U S A, 115 (37), pp. E8668-E8677. | Show Abstract | Read more

The close integration of the MAPK, PI3K, and WNT signaling pathways underpins much of development and is deregulated in cancer. In principle, combinatorial posttranslational modification of key lineage-specific transcription factors would be an effective means to integrate critical signaling events. Understanding how this might be achieved is central to deciphering the impact of microenvironmental cues in development and disease. The microphthalmia-associated transcription factor MITF plays a crucial role in the development of melanocytes, the retinal pigment epithelium, osteoclasts, and mast cells and acts as a lineage survival oncogene in melanoma. MITF coordinates survival, differentiation, cell-cycle progression, cell migration, metabolism, and lysosome biogenesis. However, how the activity of this key transcription factor is controlled remains poorly understood. Here, we show that GSK3, downstream from both the PI3K and Wnt pathways, and BRAF/MAPK signaling converges to control MITF nuclear export. Phosphorylation of the melanocyte MITF-M isoform in response to BRAF/MAPK signaling primes for phosphorylation by GSK3, a kinase inhibited by both PI3K and Wnt signaling. Dual phosphorylation, but not monophosphorylation, then promotes MITF nuclear export by activating a previously unrecognized hydrophobic export signal. Nonmelanocyte MITF isoforms exhibit poor regulation by MAPK signaling, but instead their export is controlled by mTOR. We uncover here an unanticipated mode of MITF regulation that integrates the output of key developmental and cancer-associated signaling pathways to gate MITF flux through the import-export cycle. The results have significant implications for our understanding of melanoma progression and stem cell renewal.

Tomkova M, Tomek J, Kriaucionis S, Schuster-Böckler B. 2018. Mutational signature distribution varies with DNA replication timing and strand asymmetry. Genome Biol, 19 (1), pp. 129. | Citations: 2 (Scopus) | Show Abstract | Read more

BACKGROUND: DNA replication plays an important role in mutagenesis, yet little is known about how it interacts with other mutagenic processes. Here, we use somatic mutation signatures-each representing a mutagenic process-derived from 3056 patients spanning 19 cancer types to quantify the strand asymmetry of mutational signatures around replication origins and between early and late replicating regions. RESULTS: We observe that most of the detected mutational signatures are significantly correlated with the timing or direction of DNA replication. The properties of these associations are distinct for different signatures and shed new light on several mutagenic processes. For example, our results suggest that oxidative damage to the nucleotide pool substantially contributes to the mutational landscape of esophageal adenocarcinoma. CONCLUSIONS: Together, our results indicate an interaction between DNA replication, the associated damage repair, and most mutagenic processes.

Hrdinka M, Schlicher L, Dai B, Pinkas DM, Bufton JC, Picaud S, Ward JA, Rogers C, Suebsuwong C, Nikhar S et al. 2018. Small molecule inhibitors reveal an indispensable scaffolding role of RIPK2 in NOD2 signaling. EMBO J, 37 (17), pp. e99372-e99372. | Citations: 4 (Scopus) | Show Abstract | Read more

RIPK2 mediates inflammatory signaling by the bacteria-sensing receptors NOD1 and NOD2. Kinase inhibitors targeting RIPK2 are a proposed strategy to ameliorate NOD-mediated pathologies. Here, we reveal that RIPK2 kinase activity is dispensable for NOD2 inflammatory signaling and show that RIPK2 inhibitors function instead by antagonizing XIAP-binding and XIAP-mediated ubiquitination of RIPK2. We map the XIAP binding site on RIPK2 to the loop between β2 and β3 of the N-lobe of the kinase, which is in close proximity to the ATP-binding pocket. Through characterization of a new series of ATP pocket-binding RIPK2 inhibitors, we identify the molecular features that determine their inhibition of both the RIPK2-XIAP interaction, and of cellular and in vivoNOD2 signaling. Our study exemplifies how targeting of the ATP-binding pocket in RIPK2 can be exploited to interfere with the RIPK2-XIAP interaction for modulation of NOD signaling.

Zhu B, Tang L, Chen S, Yin C, Peng S, Li X, Liu T, Liu W, Han C, Stawski L et al. 2018. Targeting the upstream transcriptional activator of PD-L1 as an alternative strategy in melanoma therapy. Oncogene, 37 (36), pp. 4941-4954. | Citations: 2 (Web of Science Lite) | Show Abstract | Read more

Programmed cell death ligand 1 (PD-L1) interacts with programmed cell death protein-1 (PD-1) as an immune checkpoint. Reactivating the immune response by inhibiting PD-L1 using therapeutic antibodies provides substantial clinical benefits in many, though not all, melanoma patients. However, transcriptional suppression of PD-L1 expression as an alternative therapeutic anti-melanoma strategy has not been exploited. Here we provide biochemical evidence demonstrating that ultraviolet radiation (UVR) induction of PD-L1 in skin is directly controlled by nuclear factor E2-related transcription factor 2 (NRF2). Depletion of NRF2 significantly induces tumor infiltration by both CD8+ and CD4+ T cells to suppress melanoma progression, and combining NRF2 inhibition with anti-PD-1 treatment enhanced its anti-tumor function. Our studies identify a critical and targetable PD-L1 upstream regulator and provide an alternative strategy to inhibit the PD-1/PD-L1 signaling in melanoma treatment.

Anquetil F, Mondanelli G, Gonzalez N, Rodriguez Calvo T, Zapardiel Gonzalo J, Krogvold L, Dahl-Jørgensen K, Van den Eynde B, Orabona C, Grohmann U, von Herrath MG. 2018. Loss of IDO1 Expression From Human Pancreatic β-Cells Precedes Their Destruction During the Development of Type 1 Diabetes. Diabetes, 67 (9), pp. 1858-1866. | Citations: 3 (Scopus) | Show Abstract | Read more

Indoleamine 2,3 dioxygenase-1 (IDO1) is a powerful immunoregulatory enzyme that is deficient in patients with type 1 diabetes (T1D). In this study, we present the first systematic evaluation of IDO1 expression and localization in human pancreatic tissue. Although IDO1 was constitutively expressed in β-cells from donors without diabetes, less IDO1 was expressed in insulin-containing islets from double autoantibody-positive donors and patients with recent-onset T1D, although it was virtually absent in insulin-deficient islets from donors with T1D. Scatter plot analysis suggested that IDO1 decay occurred in individuals with multiple autoantibodies, prior to β-cell demise. IDO1 impairment might therefore contribute to β-cell demise and could potentially emerge as a promising therapeutic target.

Tomkova M, Schuster-Böckler B. 2018. DNA Modifications: Naturally More Error Prone? Trends Genet, 34 (8), pp. 627-638. | Citations: 1 (Scopus) | Show Abstract | Read more

Epigenetic DNA modifications are essential for normal cell function in vertebrates, but they can also be hotspots of mutagenesis. Methylcytosine in particular has long been known to be less stable than other nucleotides and spontaneously deaminates to thymine. Beyond this well-established phenomenon, however, the influence of epigenetic marks on mutagenesis has recently become an active field of investigation. In this review, we summarize current knowledge of the interactions between different DNA modifications and other mutagenic processes. External mutagens, such as UV light or smoking carcinogens, affect modified cytosines differently from unmodified ones, and modified cytosine can in some cases be protective rather than mutagenic. Notably, cell-intrinsic processes, such as DNA replication, also appear to influence the mutagenesis of modified cytosines. Altogether, evidence is accumulating to show that epigenetic changes have a profound influence on tissue-specific mutation accumulation.

Li L, Friedrichsen HJ, Andrews S, Picaud S, Volpon L, Ngeow K, Berridge G, Fischer R, Borden KLB, Filippakopoulos P, Goding CR. 2018. A TFEB nuclear export signal integrates amino acid supply and glucose availability. Nat Commun, 9 (1), pp. 2685. | Citations: 1 (Web of Science Lite) | Show Abstract | Read more

How cells coordinate the response to fluctuating carbon and nitrogen availability required to maintain effective homeostasis is a key issue. Amino acid limitation that inactivates mTORC1 promotes de-phosphorylation and nuclear translocation of Transcription Factor EB (TFEB), a key transcriptional regulator of lysosome biogenesis and autophagy that is deregulated in cancer and neurodegeneration. Beyond its cytoplasmic sequestration, how TFEB phosphorylation regulates its nuclear-cytoplasmic shuttling, and whether TFEB can coordinate amino acid supply with glucose availability is poorly understood. Here we show that TFEB phosphorylation on S142 primes for GSK3β phosphorylation on S138, and that phosphorylation of both sites but not either alone activates a previously unrecognized nuclear export signal (NES). Importantly, GSK3β is inactivated by AKT in response to mTORC2 signaling triggered by glucose limitation. Remarkably therefore, the TFEB NES integrates carbon (glucose) and nitrogen (amino acid) availability by controlling TFEB flux through a nuclear import-export cycle.

Dedeić Z, Sutendra G, Hu Y, Chung K, Slee EA, White MJ, Zhou FY, Goldin RD, Ferguson DJP, McAndrew D et al. 2018. Cell autonomous role of iASPP deficiency in causing cardiocutaneous disorders. Cell Death Differ, 25 (7), pp. 1289-1303. | Citations: 1 (Scopus) | Show Abstract | Read more

Desmosome components are frequently mutated in cardiac and cutaneous disorders in animals and humans and enhanced inflammation is a common feature of these diseases. Previous studies showed that inhibitor of Apoptosis Stimulating p53 Protein (iASPP) regulates desmosome integrity at cell-cell junctions and transcription in the nucleus, and its deficiency causes cardiocutaneous disorder in mice, cattle, and humans. As iASPP is a ubiquitously expressed shuttling protein with multiple functions, a key question is whether the observed cardiocutaneous phenotypes are caused by loss of a cell autonomous role of iASPP in cardiomyocytes and keratinocytes specifically or by a loss of iASPP in other cell types such as immune cells. To address this, we developed cardiomyocyte-specific and keratinocyte-specific iASPP-deficient mouse models and show that the cell-type specific loss of iASPP in cardiomyocytes or keratinocytes is sufficient to induce cardiac or cutaneous disorders, respectively. Additionally, keratinocyte-specific iASPP-deficient mice have delayed eyelid development and wound healing. In keratinocytes, junctional iASPP is critical for stabilizing desmosomes and iASPP deficiency results in increased and disorganized cell migration, as well as impaired cell adhesion, consistent with delayed wound healing. The identification of a cell autonomous role of iASPP deficiency in causing cardiocutaneous syndrome, impaired eyelid development and wound healing suggests that variants in the iASPP gene also may contribute to polygenic heart and skin diseases.

Fielding JW, Hodson EJ, Cheng X, Ferguson DJP, Eckardt L, Adam J, Lip P, Maton-Howarth M, Ratnayaka I, Pugh CW et al. 2018. PHD2 inactivation in Type I cells drives HIF-2α-dependent multilineage hyperplasia and the formation of paraganglioma-like carotid bodies. J Physiol, 596 (18), pp. 4393-4412. | Citations: 1 (Scopus) | Show Abstract | Read more

KEY POINTS: The carotid body is a peripheral arterial chemoreceptor that regulates ventilation in response to both acute and sustained hypoxia. Type I cells in this organ respond to low oxygen both acutely by depolarization and dense core vesicle secretion and, over the longer term, via cellular proliferation and enhanced ventilatory responses. Using lineage analysis, the present study shows that the Type I cell lineage itself proliferates and expands in response to sustained hypoxia. Inactivation of HIF-2α in Type I cells impairs the ventilatory, proliferative and cell intrinsic (dense core vesicle) responses to hypoxia. Inactivation of PHD2 in Type I cells induces multilineage hyperplasia and ultrastructural changes in dense core vesicles to form paraganglioma-like carotid bodies. These changes, similar to those observed in hypoxia, are dependent on HIF-2α. Taken together, these findings demonstrate a key role for the PHD2-HIF-2α couple in Type I cells with respect to the oxygen sensing functions of the carotid body. ABSTRACT: The carotid body is a peripheral chemoreceptor that plays a central role in mammalian oxygen homeostasis. In response to sustained hypoxia, it manifests a rapid cellular proliferation and an associated increase in responsiveness to hypoxia. Understanding the cellular and molecular mechanisms underlying these processes is of interest both to specialized chemoreceptive functions of that organ and, potentially, to the general physiology and pathophysiology of cellular hypoxia. We have combined cell lineage tracing technology and conditionally inactivated alleles in recombinant mice to examine the role of components of the HIF hydroxylase pathway in specific cell types within the carotid body. We show that exposure to sustained hypoxia (10% oxygen) drives rapid expansion of the Type I, tyrosine hydroxylase expressing cell lineage, with little transdifferentiation to (or from) that lineage. Inactivation of a specific HIF isoform, HIF-2α, in the Type I cells was associated with a greatly reduced proliferation of Type I cells and hypoxic ventilatory responses, with ultrastructural evidence of an abnormality in the action of hypoxia on dense core secretory vesicles. We also show that inactivation of the principal HIF prolyl hydroxylase PHD2 within the Type I cell lineage is sufficient to cause multilineage expansion of the carotid body, with characteristics resembling paragangliomas. These morphological changes were dependent on the integrity of HIF-2α. These findings implicate specific components of the HIF hydroxylase pathway (PHD2 and HIF-2α) within Type I cells of the carotid body with respect to the oxygen sensing and adaptive functions of that organ.

Fernandez-Rozadilla C, Kartsonaki C, Woolley C, McClellan M, Whittington D, Horgan G, Leedham S, Kriaucionis S, East JE, Tomlinson I. 2018. Author Correction: Telomere length and genetics are independent colorectal tumour risk factors in an evaluation of biomarkers in normal bowel. Br J Cancer, 118 (12), pp. 1683. | Show Abstract | Read more

Since the publication of this paper, the authors noticed that James E. East was assigned to the incorrect affiliation. The affiliation information is provided correctly, above.

Mulvey B, Bhatti DL, Gyawali S, Lake AM, Kriaucionis S, Ford CP, Bruchas MR, Heintz N, Dougherty JD. 2018. Molecular and Functional Sex Differences of Noradrenergic Neurons in the Mouse Locus Coeruleus. Cell Rep, 23 (8), pp. 2225-2235. | Show Abstract | Read more

Preclinical work has long focused on male animals, though biological sex clearly influences risk for certain diseases, including many psychiatric disorders. Such disorders are often treated by drugs targeting the CNS norepinephrine system. Despite roles for noradrenergic neurons in behavior and neuropsychiatric disease models, their molecular characterization has lagged. We profiled mouse noradrenergic neurons in vivo, defining over 3,000 high-confidence transcripts expressed therein, including druggable receptors. We uncovered remarkable sex differences in gene expression, including elevated expression of the EP3 receptor in females-which we leverage to illustrate the behavioral and pharmacologic relevance of these findings-and of Slc6a15 and Lin28b, both major depressive disorder (MDD)-associated genes. Broadly, we present a means of transcriptionally profiling locus coeruleus under baseline and experimental conditions. Our findings underscore the need for preclinical work to include both sexes and suggest that sex differences in noradrenergic neurons may underlie behavioral differences relevant to disease.

Temko D, Tomlinson IPM, Severini S, Schuster-Böckler B, Graham TA. 2018. The effects of mutational processes and selection on driver mutations across cancer types. Nat Commun, 9 (1), pp. 1857. | Citations: 1 (European Pubmed Central) | Show Abstract | Read more

Epidemiological evidence has long associated environmental mutagens with increased cancer risk. However, links between specific mutation-causing processes and the acquisition of individual driver mutations have remained obscure. Here we have used public cancer sequencing data from 11,336 cancers of various types to infer the independent effects of mutation and selection on the set of driver mutations in a cancer type. First, we detect associations between a range of mutational processes, including those linked to smoking, ageing, APOBEC and DNA mismatch repair (MMR) and the presence of key driver mutations across cancer types. Second, we quantify differential selection between well-known alternative driver mutations, including differences in selection between distinct mutant residues in the same gene. These results show that while mutational processes have a large role in determining which driver mutations are present in a cancer, the role of selection frequently dominates.

Apps JR, Carreno G, Gonzalez-Meljem JM, Haston S, Guiho R, Cooper JE, Manshaei S, Jani N, Hölsken A, Pettorini B et al. 2018. Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target. Acta Neuropathol, 135 (5), pp. 757-777. | Citations: 7 (Web of Science Lite) | Show Abstract | Read more

Adamantinomatous craniopharyngiomas (ACPs) are clinically challenging tumours, the majority of which have activating mutations in CTNNB1. They are histologically complex, showing cystic and solid components, the latter comprised of different morphological cell types (e.g. β-catenin-accumulating cluster cells and palisading epithelium), surrounded by a florid glial reaction with immune cells. Here, we have carried out RNA sequencing on 18 ACP samples and integrated these data with an existing ACP transcriptomic dataset. No studies so far have examined the patterns of gene expression within the different cellular compartments of the tumour. To achieve this goal, we have combined laser capture microdissection with computational analyses to reveal groups of genes that are associated with either epithelial tumour cells (clusters and palisading epithelium), glial tissue or immune infiltrate. We use these human ACP molecular signatures and RNA-Seq data from two ACP mouse models to reveal that cell clusters are molecularly analogous to the enamel knot, a critical signalling centre controlling normal tooth morphogenesis. Supporting this finding, we show that human cluster cells express high levels of several members of the FGF, TGFB and BMP families of secreted factors, which signal to neighbouring cells as evidenced by immunostaining against the phosphorylated proteins pERK1/2, pSMAD3 and pSMAD1/5/9 in both human and mouse ACP. We reveal that inhibiting the MAPK/ERK pathway with trametinib, a clinically approved MEK inhibitor, results in reduced proliferation and increased apoptosis in explant cultures of human and mouse ACP. Finally, we analyse a prominent molecular signature in the glial reactive tissue to characterise the inflammatory microenvironment and uncover the activation of inflammasomes in human ACP. We validate these results by immunostaining against immune cell markers, cytokine ELISA and proteome analysis in both solid tumour and cystic fluid from ACP patients. Our data support a new molecular paradigm for understanding ACP tumorigenesis as an aberrant mimic of natural tooth development and opens new therapeutic opportunities by revealing the activation of the MAPK/ERK and inflammasome pathways in human ACP.

Tomkova M, McClellan M, Kriaucionis S, Schuster-Böckler B. 2018. Erratum to "DNA Replication and associated repair pathways are involved in the mutagenesis of methylated cytosine"[DNA Repair, 62 (2018) 1-7]. DNA Repair (Amst), 65 pp. 79. | Show Abstract | Read more

© 2018 Elsevier B.V. The publisher regrets that some symbols were incorrectly typeset. All occurrences of “≫ >” have been corrected to “≫”. The publisher would like to apologise for any inconvenience caused.

Prabakaran T, Bodda C, Krapp C, Zhang B-C, Christensen MH, Sun C, Reinert L, Cai Y, Jensen SB, Skouboe MK et al. 2018. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J, 37 (8), pp. e97858-e97858. | Citations: 14 (Scopus) | Show Abstract | Read more

Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62-deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy-associated vesicles. Thus, DNA sensing induces the cGAS-STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response.

Vigneron N, Stroobant V, Ferrari V, Abi Habib J, Van den Eynde BJ. 2018. Production of spliced peptides by the proteasome. Mol Immunol, | Show Abstract | Read more

CD8+ cytolytic T lymphocytes are essential players of anti-tumor immune responses. On tumors, they recognize peptides of about 8-to-10 amino acids that generally result from the degradation of cellular proteins by the proteasome. Until a decade ago, these peptides were thought to solely correspond to linear fragments of proteins that were liberated after the hydrolysis of the peptide bonds located at their extremities. However, several examples of peptides containing two fragments originally distant in the protein sequence challenged this concept and demonstrated that proteasome could also splice peptides together by creating a new peptide bond between two distant fragments. Unexpectedly, peptide splicing emerges as an essential way to increase the peptide repertoire diversity as these spliced peptides were shown to represent up to 25% of the peptides presented on a cell by MHC class I. Here, we review the different steps that led to the discovery of peptide splicing by the proteasome as well as the lightening offered by the recent progresses of mass spectrometry and bioinformatics in the analysis of the spliced peptide repertoire.

Morey P, Pfannkuch L, Pang E, Boccellato F, Sigal M, Imai-Matsushima A, Dyer V, Koch M, Mollenkopf H-J, Schlaermann P, Meyer TF. 2018. Helicobacter pylori Depletes Cholesterol in Gastric Glands to Prevent Interferon Gamma Signaling and Escape the Inflammatory Response. Gastroenterology, 154 (5), pp. 1391-1404.e9. | Citations: 5 (European Pubmed Central) | Show Abstract | Read more

BACKGROUND & AIMS: Despite inducing an inflammatory response, Helicobacter pylori can persist in the gastric mucosa for decades. H pylori expression of cholesterol-α-glucosyltransferase (encoded by cgt) is required for gastric colonization and T-cell activation. We investigated how cgt affects gastric epithelial cells and the host immune response. METHODS: MKN45 gastric epithelial cells, AGS cells, and human primary gastric epithelial cells (obtained from patients undergoing gastrectomy or sleeve resection or gastric antral organoids) were incubated with interferon gamma (IFNG) or interferon beta (IFNB) and exposed to H pylori, including cagPAI and cgt mutant strains. Some cells were incubated with methyl-β-cyclodextrin (to deplete cholesterol from membranes) or myriocin and zaragozic acid to prevent biosynthesis of sphingolipids and cholesterol and analyzed by immunoblot, immunofluorescence, and reverse transcription quantitative polymerase chain reaction analyses. We compared gene expression patterns among primary human gastric cells, uninfected or infected with H pylori P12 wt or P12Δcgt, using microarray analysis. Mice with disruption of the IFNG receptor 1 (Ifngr1-/- mice) and C57BL6 (control) mice were infected with PMSS1 (wild-type) or PMSS1Δcgt H pylori; gastric tissues were collected and analyzed by reverse transcription quantitative polymerase chain reaction or confocal microscopy. RESULTS: In primary gastric cells and cell lines, infection with H pylori, but not cgt mutants, blocked IFNG-induced signaling via JAK and STAT. Cells infected with H pylori were depleted of cholesterol, which reduced IFNG signaling by disrupting lipid rafts, leading to reduced phosphorylation (activation) of JAK and STAT1. H pylori infection of cells also blocked signaling by IFNB, interleukin 6 (IL6), and IL22 and reduced activation of genes regulated by these signaling pathways, including cytokines that regulate T-cell function (MIG and IP10) and anti-microbial peptides such as human β-defensin 3 (hBD3). We found that this mechanism allows H pylori to persist in proximity to infected cells while inducing inflammation only in the neighboring, non-infected epithelium. Stomach tissues from mice infected with PMSS1 had increased levels of IFNG, but did not express higher levels of interferon-response genes. Expression of the IFNG-response gene IRF1 was substantially higher in PMSS1Δcgt-infected mice than PMSS1-infected mice. Ifngr1-/- mice were colonized by PMSS1 to a greater extent than control mice. CONCLUSIONS: H pylori expression of cgt reduces cholesterol levels in infected gastric epithelial cells and thereby blocks IFNG signaling, allowing the bacteria to escape the host inflammatory response. These findings provide insight into the mechanisms by which H pylori might promote gastric carcinogenesis (persisting despite constant inflammation) and ineffectiveness of T-cell-based vaccines against H pylori.

Severson DT, Owen RP, White MJ, Lu X, Schuster-Böckler B. 2018. BEARscc determines robustness of single-cell clusters using simulated technical replicates. Nat Commun, 9 (1), pp. 1187. | Citations: 4 (European Pubmed Central) | Show Abstract | Read more

Single-cell messenger RNA sequencing (scRNA-seq) has emerged as a powerful tool to study cellular heterogeneity within complex tissues. Subpopulations of cells with common gene expression profiles can be identified by applying unsupervised clustering algorithms. However, technical variance is a major confounding factor in scRNA-seq, not least because it is not possible to replicate measurements on the same cell. Here, we present BEARscc, a tool that uses RNA spike-in controls to simulate experiment-specific technical replicates. BEARscc works with a wide range of existing clustering algorithms to assess the robustness of clusters to technical variation. We demonstrate that the tool improves the unsupervised classification of cells and facilitates the biological interpretation of single-cell RNA-seq experiments.

Orabona C, Mondanelli G, Pallotta MT, Carvalho A, Albini E, Fallarino F, Vacca C, Volpi C, Belladonna ML, Berioli MG et al. 2018. Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1in juvenile diabetes. JCI Insight, 3 (6), | Citations: 3 (Web of Science Lite) | Show Abstract | Read more

A defect in indoleamine 2,3-dioxygenase 1 (IDO1), which is responsible for immunoregulatory tryptophan catabolism, impairs development of immune tolerance to autoantigens in NOD mice, a model for human autoimmune type 1 diabetes (T1D). Whether IDO1 function is also defective in T1D is still unknown. We investigated IDO1 function in sera and peripheral blood mononuclear cells (PBMCs) from children with T1D and matched controls. These children were further included in a discovery study to identify SNPs in IDO1 that might modify the risk of T1D. T1D in children was characterized by a remarkable defect in IDO1 function. A common haplotype, associated with dysfunctional IDO1, increased the risk of developing T1D in the discovery and also confirmation studies. In T1D patients sharing such a common IDO1 haplotype, incubation of PBMCs in vitro with tocilizumab (TCZ) - an IL-6 receptor blocker - would, however, rescue IDO1 activity. In an experimental setting with diabetic NOD mice, TCZ was found to restore normoglycemia via IDO1-dependent mechanisms. Thus, functional SNPs of IDO1 are associated with defective tryptophan catabolism in human T1D, and maneuvers aimed at restoring IDO1 function would be therapeutically effective in at least a subgroup of T1D pediatric patients.

Fernandez-Rozadilla C, Kartsonaki C, Woolley C, McClellan M, Whittington D, Horgan G, Leedham S, Kriaucionis S, East J, Tomlinson I. 2018. Telomere length and genetics are independent colorectal tumour risk factors in an evaluation of biomarkers in normal bowel. Br J Cancer, 118 (5), pp. 727-732. | Citations: 3 (Web of Science Lite) | Show Abstract | Read more

BACKGROUND: Colorectal cancer (CRC) screening might be improved by using a measure of prior risk to modulate screening intensity or the faecal immunochemical test threshold. Intermediate molecular biomarkers could aid risk prediction by capturing both known and unknown risk factors. METHODS: We sampled normal bowel mucosa from the proximal colon, distal colon and rectum of 317 individuals undergoing colonoscopy. We defined cases as having a personal history of colorectal polyp(s)/cancer, and controls as having no history of colorectal neoplasia. Molecular analyses were performed for: telomere length (TL); global methylation; and the expression of genes in molecular pathways associated with colorectal tumourigenesis. We also calculated a polygenic risk score (PRS) based on CRC susceptibility polymorphisms. RESULTS: Bowel TL was significantly longer in cases than controls, but was not associated with blood TL. PRS was significantly and independently higher in cases. Hypermethylation showed a suggestive association with case:control status. No gene or pathway was differentially expressed between cases and controls. Gene expression often varied considerably between bowel locations. CONCLUSIONS: PRS and bowel TL (but not blood TL) may be clinically-useful predictors of CRC risk. Sample collection to assess these biomarkers is feasible in clinical practice, especially where population screening uses flexible sigmoidoscopy or colonoscopy.

Frost SL, Liu K, Li IMH, Poulet B, Comerford E, De Val S, Bou-Gharios G. 2018. Multiple enhancer regions govern the transcription of CCN2 during embryonic development. J Cell Commun Signal, 12 (1), pp. 231-243. | Citations: 1 (European Pubmed Central) | Show Abstract | Read more

CCN2 is a critical matricellular protein that is expressed in several cells with major implications in physiology and different pathologies. However, the transcriptional regulation of this gene remains obscure. We used the Encyclopaedia of DNA Elements browser (ENCODE) to visualise the region spanning from 300 kb upstream to the CCN2 start site in silico in order to identify enhancer regions that regulate transcription of this gene. Selection was based on three criteria associated with enhancer regions: 1) H3K4me1 and H3K27ac histone modifications, 2) DNase I hypersensitivity of chromatin and 3) inter-species conservation. Reporter constructs were created with sequences spanning each of the regions of interest placed upstream of an Hsp68 silent proximal promoter sequence in order to drive the expression of β-galactosidase transgene. Each of these constructs was subsequently used to create transgenic mice in which reporter gene production was assessed at the E15.5 developmental stage. Four functional enhancers were identified, with each driving distinct, tissue-specific patterns of transgene expression. An enhancer located -100 kb from the CCN2 transcription start site facilitated expression within vascular tissue. An enhancer -135 kb upstream of CCN2 drove expression within the articular chondrocytes of synovial joints. The other two enhancers, located at -198 kb and -229 kb, mediated transgene expression within dermal fibroblasts, however the most prevalent activity was found within hypertrophic chondrocytes and periosteal tissue, respectively. These findings suggest that the global expression of CCN2 during development results from the activity of several tissue-specific enhancer regions in addition to proximal regulatory elements that have previously been demonstrated to drive transcription of the gene during development.

Boccellato F, Woelffling S, Imai-Matsushima A, Sanchez G, Goosmann C, Schmid M, Berger H, Morey P, Denecke C, Ordemann J, Meyer TF. 2018. Polarised epithelial monolayers of the gastric mucosa reveal insights into mucosal homeostasis and defence against infection. Gut, 68 (3), pp. 400-413. | Citations: 2 (Scopus) | Show Abstract | Read more

OBJECTIVE: Helicobacter pylori causes life-long colonisation of the gastric mucosa, leading to chronic inflammation with increased risk of gastric cancer. Research on the pathogenesis of this infection would strongly benefit from an authentic human in vitro model. DESIGN: Antrum-derived gastric glands from surgery specimens served to establish polarised epithelial monolayers via a transient air-liquid interface culture stage to study cross-talk with H. pylori and the adjacent stroma. RESULTS: The resulting 'mucosoid cultures', so named because they recapitulate key characteristics of the gastric mucosa, represent normal stem cell-driven cultures that can be passaged for months. These highly polarised columnar epithelial layers encompass the various gastric antral cell types and secrete mucus at the apical surface. By default, they differentiate towards a foveolar, MUC5AC-producing phenotype, whereas Wnt signalling stimulates proliferation of MUC6-producing cells and preserves stemness-reminiscent of the gland base. Stromal cells from the lamina propria secrete Wnt inhibitors, antagonising stem-cell niche signalling and inducing differentiation. On infection with H. pylori, a strong inflammatory response is induced preferentially in the undifferentiated basal cell phenotype. Infection of cultures for several weeks produces foci of viable bacteria and a persistent inflammatory condition, while the secreted mucus establishes a barrier that only few bacteria manage to overcome. CONCLUSION: Gastric mucosoid cultures faithfully reproduce the features of normal human gastric epithelium, enabling new approaches for investigating the interaction of H. pylori with the epithelial surface and the cross-talk with the basolateral stromal compartment. Our observations provide striking insights in the regulatory circuits of inflammation and defence.

Glaeser K, Urban M, Fenech E, Voloshanenko O, Kranz D, Lari F, Christianson JC, Boutros M. 2018. ERAD-dependent control of the Wnt secretory factor Evi. EMBO J, 37 (4), pp. e97311-e97311. | Show Abstract | Read more

Active regulation of protein abundance is an essential strategy to modulate cellular signaling pathways. Within the Wnt signaling cascade, regulated degradation of β-catenin by the ubiquitin-proteasome system (UPS) affects the outcome of canonical Wnt signaling. Here, we found that abundance of the Wnt cargo receptor Evi (Wls/GPR177), which is required for Wnt protein secretion, is also regulated by the UPS through endoplasmic reticulum (ER)-associated degradation (ERAD). In the absence of Wnt ligands, Evi is ubiquitinated and targeted for ERAD in a VCP-dependent manner. Ubiquitination of Evi involves the E2-conjugating enzyme UBE2J2 and the E3-ligase CGRRF1. Furthermore, we show that a triaging complex of Porcn and VCP determines whether Evi enters the secretory or the ERAD pathway. In this way, ERAD-dependent control of Evi availability impacts the scale of Wnt protein secretion by adjusting the amount of Evi to meet the requirement of Wnt protein export. As Wnt and Evi protein levels are often dysregulated in cancer, targeting regulatory ERAD components might be a useful approach for therapeutic interventions.

Tomkova M, McClellan M, Kriaucionis S, Schuster-Böckler B. 2018. DNA Replication and associated repair pathways are involved in the mutagenesis of methylated cytosine. DNA Repair (Amst), 62 pp. 1-7. | Citations: 3 (Web of Science Lite) | Show Abstract | Read more

Transitions of cytosine to thymine in CpG dinucleotides are the most frequent type of mutations observed in cancer. This increased mutability is commonly explained by the presence of 5-methylcytosine (5mC) and its spontaneous hydrolytic deamination into thymine. Here, we describe observations that question whether spontaneous deamination alone causes the elevated mutagenicity of 5mC. Tumours with somatic mutations in DNA mismatch-repair genes or in the proofreading domain of DNA polymerase ε (Pol ε) exhibit more 5mC to T transitions than would be expected, given the kinetics of hydrolytic deamination. This enrichment is asymmetrical around replication origins with a preference for the leading strand template, in particular in methylated cytosines flanked by guanines (GCG). Notably, GCG to GTG mutations also exhibit strand asymmetry in mismatch-repair and Pol ε wild-type tumours. Together, these findings suggest that mis-incorporation of A opposite 5mC during replication of the leading strand might be a contributing factor in the mutagenesis of methylated cytosine.

Moore S, Järvelin AI, Davis I, Bond GL, Castello A. 2018. Expanding horizons: new roles for non-canonical RNA-binding proteins in cancer. Curr Opin Genet Dev, 48 pp. 112-120. | Citations: 5 (Scopus) | Show Abstract | Read more

Cancer development involves the stepwise accumulation of genetic lesions that overcome the normal regulatory pathways that prevent unconstrained cell division and tissue growth. Identification of the genetic changes that cause cancer has long been the subject of intensive study, leading to the identification of several RNA-binding proteins (RBPs) linked to cancer. Cross-reference of the complement of RBPs recently identified by RNA interactome capture with cancer-associated genes and biological processes led to the identification of a set of 411 proteins with potential implications in cancer biology. These involve a broad spectrum of cellular processes including response to stress, metabolism and cell adhesion. Future studies should aim to understand these proteins and their connection to cancer from an RNA-centred perspective, holding the promise of new mechanistic understanding of cancer formation and novel approaches to diagnosis and treatment.

Papaspyropoulos A, Bradley L, Thapa A, Leung CY, Toskas K, Koennig D, Pefani D-E, Raso C, Grou C, Hamilton G et al. 2018. RASSF1A uncouples Wnt from Hippo signalling and promotes YAP mediated differentiation via p73. Nat Commun, 9 (1), pp. 424. | Citations: 1 (European Pubmed Central) | Show Abstract | Read more

Transition from pluripotency to differentiation is a pivotal yet poorly understood developmental step. Here, we show that the tumour suppressor RASSF1A is a key player driving the early specification of cell fate. RASSF1A acts as a natural barrier to stem cell self-renewal and iPS cell generation, by switching YAP from an integral component in the β-catenin-TCF pluripotency network to a key factor that promotes differentiation. We demonstrate that epigenetic regulation of the Rassf1A promoter maintains stemness by allowing a quaternary association of YAP-TEAD and β-catenin-TCF3 complexes on the Oct4 distal enhancer. However, during differentiation, promoter demethylation allows GATA1-mediated RASSF1A expression which prevents YAP from contributing to the TEAD/β-catenin-TCF3 complex. Simultaneously, we find that RASSF1A promotes a YAP-p73 transcriptional programme that enables differentiation. Together, our findings demonstrate that RASSF1A mediates transcription factor selection of YAP in stem cells, thereby acting as a functional "switch" between pluripotency and initiation of differentiation.

Guna A, Volkmar N, Christianson JC, Hegde RS. 2018. The ER membrane protein complex is a transmembrane domain insertase. Science, 359 (6374), pp. 470-473. | Citations: 22 (Scopus) | Show Abstract | Read more

Insertion of proteins into membranes is an essential cellular process. The extensive biophysical and topological diversity of membrane proteins necessitates multiple insertion pathways that remain incompletely defined. Here we found that known membrane insertion pathways fail to effectively engage tail-anchored membrane proteins with moderately hydrophobic transmembrane domains. These proteins are instead shielded in the cytosol by calmodulin. Dynamic release from calmodulin allowed sampling of the endoplasmic reticulum (ER), where the conserved ER membrane protein complex (EMC) was shown to be essential for efficient insertion in vitro and in cells. Purified EMC in synthetic liposomes catalyzed the insertion of its substrates in a reconstituted system. Thus, EMC is a transmembrane domain insertase, a function that may explain its widely pleiotropic membrane-associated phenotypes across organisms.

Ahsan F, Maertzdorf J, Guhlich-Bornhof U, Kaufmann SHE, Moura-Alves P. 2018. IL-36/LXR axis modulates cholesterol metabolism and immune defense to Mycobacterium tuberculosis. Sci Rep, 8 (1), pp. 1520. | Citations: 2 (Scopus) | Show Abstract | Read more

Mycobacterium tuberculosis (Mtb) is a life-threatening pathogen in humans. Bacterial infection of macrophages usually triggers strong innate immune mechanisms, including IL-1 cytokine secretion. The newer member of the IL-1 family, IL-36, was recently shown to be involved in cellular defense against Mtb. To unveil the underlying mechanism of IL-36 induced antibacterial activity, we analyzed its role in the regulation of cholesterol metabolism, together with the involvement of Liver X Receptor (LXR) in this process. We report that, in Mtb-infected macrophages, IL-36 signaling modulates cholesterol biosynthesis and efflux via LXR. Moreover, IL-36 induces the expression of cholesterol-converting enzymes and the accumulation of LXR ligands, such as oxysterols. Ultimately, both IL-36 and LXR signaling play a role in the regulation of antimicrobial peptides expression and in Mtb growth restriction. These data provide novel evidence for the importance of IL-36 and cholesterol metabolism mediated by LXR in cellular host defense against Mtb.

Zhu B, Chen S, Wang H, Yin C, Han C, Peng C, Liu Z, Wan L, Zhang X, Zhang J et al. 2018. The protective role of DOT1L in UV-induced melanomagenesis. Nat Commun, 9 (1), pp. 259. | Citations: 7 (Web of Science Lite) | Show Abstract | Read more

The DOT1L histone H3 lysine 79 (H3K79) methyltransferase plays an oncogenic role in MLL-rearranged leukemogenesis. Here, we demonstrate that, in contrast to MLL-rearranged leukemia, DOT1L plays a protective role in ultraviolet radiation (UVR)-induced melanoma development. Specifically, the DOT1L gene is located in a frequently deleted region and undergoes somatic mutation in human melanoma. Specific mutations functionally compromise DOT1L methyltransferase enzyme activity leading to reduced H3K79 methylation. Importantly, in the absence of DOT1L, UVR-induced DNA damage is inefficiently repaired, so that DOT1L loss promotes melanoma development in mice after exposure to UVR. Mechanistically, DOT1L facilitates DNA damage repair, with DOT1L-methylated H3K79 involvement in binding and recruiting XPC to the DNA damage site for nucleotide excision repair (NER). This study indicates that DOT1L plays a protective role in UVR-induced melanomagenesis.

Li IMH, Liu K, Neal A, Clegg PD, De Val S, Bou-Gharios G. 2018. Differential tissue specific, temporal and spatial expression patterns of the Aggrecan gene is modulated by independent enhancer elements. Sci Rep, 8 (1), pp. 950. | Citations: 1 (Web of Science Lite) | Show Abstract | Read more

The transcriptional mechanism through which chondrocytes control the spatial and temporal composition of the cartilage tissue has remained largely elusive. The central aim of this study was to identify whether transcriptional enhancers played a role in the organisation of the chondrocytes in cartilaginous tissue. We focused on the Aggrecan gene (Acan) as it is essential for the normal structure and function of cartilage and it is expressed developmentally in different stages of chondrocyte maturation. Using transgenic reporter studies in mice we identified four elements, two of which showed individual chondrocyte developmental stage specificity. In particular, one enhancer (-80) distinguishes itself from the others by being predominantly active in adult cartilage. Furthermore, the -62 element uniquely drove reporter activity in early chondrocytes. The remaining chondrocyte specific enhancers, +28 and -30, showed no preference to chondrocyte type. The transcription factor SOX9 interacted with all the enhancers in vitro and mutation of SOX9 binding sites in one of the enhancers (-30) resulted in a loss of its chondrocyte specificity and ectopic enhancer reporter activity. Thus, the Acan enhancers orchestrate the precise spatiotemporal expression of this gene in cartilage types at different stages of development and adulthood.

Goding CR. 2018. Cell and molecular biology: a new section joins the fight against cancer. Br J Cancer, 118 (1), pp. 1-2. | Read more

Lai AG, Forde D, Chang WH, Yuan F, Zhuang X, Orbegozo Rubio C, Song C-X, McKeating JA. 2018. Glucose and glutamine availability regulate HepG2 transcriptional responses to low oxygen. Wellcome Open Res, 3 pp. 126. | Show Abstract | Read more

Background: Little is known about the impact of nutrients on cellular transcriptional responses, especially in face of environmental stressors such as oxygen deprivation. Hypoxia-inducible factors (HIF) coordinate the expression of genes essential for adaptation to oxygen-deprived environments. A second family of oxygen-sensing genes known as the alpha-ketoglutarate-dependent dioxygenases are also implicated in oxygen homeostasis and epigenetic regulation. The relationship between nutritional status and cellular response to hypoxia is understudied. In vitro cell culture systems frequently propagate cells in media that contains excess nutrients, and this may directly influence transcriptional response in hypoxia. Methods: We studied the effect of glucose and glutamine concentration on HepG2 hepatoma transcriptional response to low oxygen and expression of hypoxia inducible factor-1α (HIF-1α). Mass spectrometry confirmed low oxygen perturbation of dioxygenase transcripts resulted in changes in DNA methylation. Results: Under normoxic conditions, we observed a significant upregulation of both HIF-target genes and oxygen-dependent dioxygenases in HepG2 cells cultured with physiological levels of glucose or glutamine relative to regular DMEM media, demonstrating that excess glutamine/glucose can mask changes in gene expression. Under hypoxic conditions, CA9 was the most upregulated gene in physiological glutamine media while TETs and FTO dioxygenases were downregulated in physiological glucose. Hypoxic regulation of these transcripts did not associate with changes in HIF-1α protein expression. Downregulation of TETs suggests a potential for epigenetic modulation. Mass-spectrometry quantification of modified DNA bases confirmed our transcript data. Hypoxia resulted in decreased DNA hydroxymethylation, which correlated with TETs downregulation. Additionally, we observed that TET2 expression was significantly downregulated in patients with hepatocellular carcinoma, suggesting that tumour hypoxia may deregulate TET2 expression resulting in global changes in DNA hydroxymethylation.   Conclusion: Given the dramatic effects of nutrient availability on gene expression, future in vitro experiments should be aware of how excess levels of glutamine and glucose may perturb transcriptional responses.

Vigneron N, Ferrari V, Stroobant V, Abi Habib J, Van den Eynde BJ. 2017. Peptide splicing by the proteasome. J Biol Chem, 292 (51), pp. 21170-21179. | Citations: 9 (Scopus) | Show Abstract | Read more

The proteasome is the major protease responsible for the production of antigenic peptides recognized by CD8+ cytolytic T cells (CTL). These peptides, generally 8-10 amino acids long, are presented at the cell surface by major histocompatibility complex (MHC) class I molecules. Originally, these peptides were believed to be solely derived from linear fragments of proteins, but this concept was challenged several years ago by the isolation of anti-tumor CTL that recognized spliced peptides, i.e. peptides composed of fragments distant in the parental protein. The splicing process was shown to occur in the proteasome through a transpeptidation reaction involving an acyl-enzyme intermediate. Here, we review the steps that led to the discovery of spliced peptides as well as the recent advances that uncover the unexpected importance of spliced peptides in the composition of the MHC class I repertoire.

Crosignani S, Bingham P, Bottemanne P, Cannelle H, Cauwenberghs S, Cordonnier M, Dalvie D, Deroose F, Feng JL, Gomes B et al. 2017. Discovery of a Novel and Selective Indoleamine 2,3-Dioxygenase (IDO-1) Inhibitor 3-(5-Fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione (EOS200271/PF-06840003) and Its Characterization as a Potential Clinical Candidate. J Med Chem, 60 (23), pp. 9617-9629. | Citations: 15 (Scopus) | Show Abstract | Read more

Tumors use tryptophan-catabolizing enzymes such as indoleamine 2,3-dioxygenase (IDO-1) to induce an immunosuppressive environment. IDO-1 is induced in response to inflammatory stimuli and promotes immune tolerance through effector T-cell anergy and enhanced Treg function. As such, IDO-1 is a nexus for the induction of a key immunosuppressive mechanism and represents an important immunotherapeutic target in oncology. Starting from HTS hit 5, IDO-1 inhibitor 6 (EOS200271/PF-06840003) has been developed. The structure-activity relationship around 6 is described and rationalized using the X-ray crystal structure of 6 bound to human IDO-1, which shows that 6, differently from most of the IDO-1 inhibitors described so far, does not bind to the heme iron atom and has a novel binding mode. Clinical candidate 6 shows good potency in an IDO-1 human whole blood assay and also shows a very favorable ADME profile leading to favorable predicted human pharmacokinetic properties, including a predicted half-life of 16-19 h.

Gerken PA, Wolstenhulme JR, Tumber A, Hatch SB, Zhang Y, Müller S, Chandler SA, Mair B, Li F, Nijman SMB et al. 2017. Discovery of a Highly Selective Cell-Active Inhibitor of the Histone Lysine Demethylases KDM2/7. Angew Chem Int Ed Engl, 56 (49), pp. 15555-15559. | Citations: 4 (Scopus) | Show Abstract | Read more

Histone lysine demethylases (KDMs) are of critical importance in the epigenetic regulation of gene expression, yet there are few selective, cell-permeable inhibitors or suitable tool compounds for these enzymes. We describe the discovery of a new class of inhibitor that is highly potent towards the histone lysine demethylases KDM2A/7A. A modular synthetic approach was used to explore the chemical space and accelerate the investigation of key structure-activity relationships, leading to the development of a small molecule with around 75-fold selectivity towards KDM2A/7A versus other KDMs, as well as cellular activity at low micromolar concentrations.

Louphrasitthiphol P, Goding CR. 2017. Macrophage Cytoplasmic Transfer in Melanoma Invasion. Dev Cell, 43 (5), pp. 543-544. | Citations: 1 (Scopus) | Show Abstract | Read more

Within tumors, macrophage infiltration can promote cancer cell invasiveness and, consequently, metastatic dissemination. In this issue of Developmental Cell, Roh-Johnson et al. (2017) reveal that cytoplasmic transfer from macrophages to melanoma cells correlates with melanoma invasion and arises as a result of intimate cell-cell contact.

Ait-Belkacem R, Bol V, Hamm G, Schramme F, Van Den Eynde B, Poncelet L, Pamelard F, Stauber J, Gomes B. 2017. Microenvironment Tumor Metabolic Interactions Highlighted by qMSI: Application to the Tryptophan-Kynurenine Pathway in Immuno-Oncology. SLAS Discov, 22 (10), pp. 1182-1192. | Citations: 7 (Scopus) | Show Abstract | Read more

Inhibition of NK and effector T-cell functions and activation of regulatory cell populations are the main immunosuppressive effects of indoleamine-2,3-dioxygenase1 (IDO1). By converting tryptophan (Trp) into kynurenine (Kyn), IDO1 is involved in the immune response homeostasis, and its dysregulated expression is described in immune-related pathologies, as tumors that hijack it to evade immune destruction. Thereby, IDO1 inhibitors are being developed to stimulate antitumor immune responses. Existing and standard quantitation methods of IDO1 substrate and metabolite(s) are based on the total level of Trp and its metabolites determined by liquid chromatography tandem mass spectrometry analysis in human plasma, cerebrospinal fluid, and brain. Here, we describe the detection, localization, and absolute quantitation of Trp and Kyn by quantitative mass spectrometry imaging (qMSI) in transfected murine tumor models expressing various levels of IDO1. Myeloid, glycolysis metabolic signatures, and correlation between IDO1 expression and Trp to Kyn conversion are also shown. High-definition IDO1 and GCN2 immunostainings overlaid with Kyn molecular images underline the tumor metabolism and heterogeneity. The development of immunotherapies such as IDO1 inhibitors requires a deep understanding of the immune system, the interplay of cancer cells, and biomarker characterization. Our data underline that qMSI allows the study of the spatial distribution and quantitation of endogenous immune metabolites for biology and pharmacology studies.

Gonzalez-Meljem JM, Haston S, Carreno G, Apps JR, Pozzi S, Stache C, Kaushal G, Virasami A, Panousopoulos L, Mousavy-Gharavy SN et al. 2017. Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nat Commun, 8 (1), pp. 1819. | Citations: 10 (Web of Science Lite) | Show Abstract | Read more

Senescent cells may promote tumour progression through the activation of a senescence-associated secretory phenotype (SASP), whether these cells are capable of initiating tumourigenesis in vivo is not known. Expression of oncogenic β-catenin in Sox2+ young adult pituitary stem cells leads to formation of clusters of stem cells and induction of tumours resembling human adamantinomatous craniopharyngioma (ACP), derived from Sox2- cells in a paracrine manner. Here, we uncover the mechanisms underlying this paracrine tumourigenesis. We show that expression of oncogenic β-catenin in Hesx1+ embryonic precursors also results in stem cell clusters and paracrine tumours. We reveal that human and mouse clusters are analogous and share a common signature of senescence and SASP. Finally, we show that mice with reduced senescence and SASP responses exhibit decreased tumour-inducing potential. Together, we provide evidence that senescence and a stem cell-associated SASP drive cell transformation and tumour initiation in vivo in an age-dependent fashion.

Zhu J, Powis de Tenbossche CG, Cané S, Colau D, van Baren N, Lurquin C, Schmitt-Verhulst A-M, Liljeström P, Uyttenhove C, Van den Eynde BJ. 2017. Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat Commun, 8 (1), pp. 1404. | Citations: 15 (Scopus) | Show Abstract | Read more

Despite impressive clinical success, cancer immunotherapy based on immune checkpoint blockade remains ineffective in many patients due to tumoral resistance. Here we use the autochthonous TiRP melanoma model, which recapitulates the tumoral resistance signature observed in human melanomas. TiRP tumors resist immunotherapy based on checkpoint blockade, cancer vaccines or adoptive T-cell therapy. TiRP tumors recruit and activate tumor-specific CD8+ T cells, but these cells then undergo apoptosis. This does not occur with isogenic transplanted tumors, which are rejected after adoptive T-cell therapy. Apoptosis of tumor-infiltrating lymphocytes can be prevented by interrupting the Fas/Fas-ligand axis, and is triggered by polymorphonuclear-myeloid-derived suppressor cells, which express high levels of Fas-ligand and are enriched in TiRP tumors. Blocking Fas-ligand increases the anti-tumor efficacy of adoptive T-cell therapy in TiRP tumors, and increases the efficacy of checkpoint blockade in transplanted tumors. Therefore, tumor-infiltrating lymphocytes apoptosis is a relevant mechanism of immunotherapy resistance, which could be blocked by interfering with the Fas/Fas-ligand pathway.

Pan W, Ngo TTM, Camunas-Soler J, Song C-X, Kowarsky M, Blumenfeld YJ, Wong RJ, Shaw GM, Stevenson DK, Quake SR. 2017. Simultaneously Monitoring Immune Response and Microbial Infections during Pregnancy through Plasma cfRNA Sequencing. Clin Chem, 63 (11), pp. 1695-1704. | Citations: 8 (Scopus) | Show Abstract | Read more

BACKGROUND: Plasma cell-free RNA (cfRNA) encompasses a broad spectrum of RNA species that can be derived from both human cells and microbes. Because cfRNA is fragmented and of low concentration, it has been challenging to profile its transcriptome using standard RNA-seq methods. METHODS: We assessed several recently developed RNA-seq methods on cfRNA samples. We then analyzed the dynamic changes of both the human transcriptome and the microbiome of plasma during pregnancy from 60 women. RESULTS: cfRNA reflects a well-orchestrated immune modulation during pregnancy: an up-regulation of antiinflammatory genes and an increased abundance of antimicrobial genes. We observed that the plasma microbiome remained relatively stable during pregnancy. The bacteria Ureaplasma shows an increased prevalence and increased abundance at postpartum, which is likely to be associated with postpartum infection. We demonstrated that cfRNA-seq can be used to monitor viral infections. We detected a number of human pathogens in our patients, including an undiagnosed patient with a high load of human parvovirus B19 virus (B19V), which is known to be a potential cause of complications in pregnancy. CONCLUSIONS: Plasma cfRNA-seq demonstrates the potential to simultaneously monitor immune response and microbial infections during pregnancy.

Yeh T-L, Leissing TM, Abboud MI, Thinnes CC, Atasoylu O, Holt-Martyn JP, Zhang D, Tumber A, Lippl K, Lohans CT et al. 2017. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem Sci, 8 (11), pp. 7651-7668. | Citations: 23 (Scopus) | Show Abstract | Read more

Inhibition of the human 2-oxoglutarate (2OG) dependent hypoxia inducible factor (HIF) prolyl hydroxylases (human PHD1-3) causes upregulation of HIF, thus promoting erythropoiesis and is therefore of therapeutic interest. We describe cellular, biophysical, and biochemical studies comparing four PHD inhibitors currently in clinical trials for anaemia treatment, that describe their mechanisms of action, potency against isolated enzymes and in cells, and selectivities versus representatives of other human 2OG oxygenase subfamilies. The 'clinical' PHD inhibitors are potent inhibitors of PHD catalyzed hydroxylation of the HIF-α oxygen dependent degradation domains (ODDs), and selective against most, but not all, representatives of other human 2OG dependent dioxygenase subfamilies. Crystallographic and NMR studies provide insights into the different active site binding modes of the inhibitors. Cell-based results reveal the inhibitors have similar effects on the upregulation of HIF target genes, but differ in the kinetics of their effects and in extent of inhibition of hydroxylation of the N- and C-terminal ODDs; the latter differences correlate with the biophysical observations.

Hrdinka M, Gyrd-Hansen M. 2017. The Met1-Linked Ubiquitin Machinery: Emerging Themes of (De)regulation. Mol Cell, 68 (2), pp. 265-280. | Citations: 12 (Web of Science Lite) | Show Abstract | Read more

The linear ubiquitin chain assembly complex, LUBAC, is the only known mammalian ubiquitin ligase that makes methionine 1 (Met1)-linked polyubiquitin (also referred to as linear ubiquitin). A decade after LUBAC was discovered as a cellular activity of unknown function, there are now many lines of evidence connecting Met1-linked polyubiquitin to NF-κB signaling, cell death, inflammation, immunity, and cancer. We now know that Met1-linked polyubiquitin has potent signaling functions and that its deregulation is connected to disease. Indeed, mutations and deficiencies in several factors involved in conjugation and deconjugation of Met1-linked polyubiquitin have been implicated in immune-related disorders. Here, we discuss current knowledge and recent insights into the role and regulation of Met1-linked polyubiquitin, with an emphasis on the mechanisms controlling the function of LUBAC.

Chiang IK-N, Fritzsche M, Pichol-Thievend C, Neal A, Holmes K, Lagendijk A, Overman J, D'Angelo D, Omini A, Hermkens D et al. 2017. Correction: SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development doi: 10.1242/dev.146241. Development, 144 (20), pp. 3847-3848. | Read more

Song C-X, Yin S, Ma L, Wheeler A, Chen Y, Zhang Y, Liu B, Xiong J, Zhang W, Hu J et al. 2017. 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res, 27 (10), pp. 1231-1242. | Citations: 20 (Scopus) | Show Abstract | Read more

5-Hydroxymethylcytosine (5hmC) is an important mammalian DNA epigenetic modification that has been linked to gene regulation and cancer pathogenesis. Here we explored the diagnostic potential of 5hmC in circulating cell-free DNA (cfDNA) using a sensitive chemical labeling-based low-input shotgun sequencing approach. We sequenced cell-free 5hmC from 49 patients of seven different cancer types and found distinct features that could be used to predict cancer types and stages with high accuracy. Specifically, we discovered that lung cancer leads to a progressive global loss of 5hmC in cfDNA, whereas hepatocellular carcinoma and pancreatic cancer lead to disease-specific changes in the cell-free hydroxymethylome. Our proof-of-principle results suggest that cell-free 5hmC signatures may potentially be used not only to identify cancer types but also to track tumor stage in some cancers.

Schulz J, Avci D, Queisser MA, Gutschmidt A, Dreher L-S, Fenech EJ, Volkmar N, Hayashi Y, Hoppe T, Christianson JC. 2017. Conserved cytoplasmic domains promote Hrd1 ubiquitin ligase complex formation for ER-associated degradation (ERAD). J Cell Sci, 130 (19), pp. 3322-3335. | Citations: 5 (Scopus) | Show Abstract | Read more

The mammalian ubiquitin ligase Hrd1 is the central component of a complex facilitating degradation of misfolded proteins during the ubiquitin-proteasome-dependent process of ER-associated degradation (ERAD). Hrd1 associates with cofactors to execute ERAD, but their roles and how they assemble with Hrd1 are not well understood. Here, we identify crucial cofactor interaction domains within Hrd1 and report a previously unrecognised evolutionarily conserved segment within the intrinsically disordered cytoplasmic domain of Hrd1 (termed the HAF-H domain), which engages complementary segments in the cofactors FAM8A1 and Herp (also known as HERPUD1). This domain is required by Hrd1 to interact with both FAM8A1 and Herp, as well as to assemble higher-order Hrd1 complexes. FAM8A1 enhances binding of Herp to Hrd1, an interaction that is required for ERAD. Our findings support a model of Hrd1 complex formation, where the Hrd1 cytoplasmic domain and FAM8A1 have a central role in the assembly and activity of this ERAD machinery.

Vigneron N, Abi Habib J, Van den Eynde BJ. 2017. Learning from the Proteasome How To Fine-Tune Cancer Immunotherapy. Trends Cancer, 3 (10), pp. 726-741. | Citations: 2 (Scopus) | Show Abstract | Read more

Cancer immunotherapy has recently emerged as a forefront strategy to fight cancer. Key players in antitumor responses are CD8+ cytolytic T lymphocytes (CTLs) that can detect tumor cells that carry antigens, in other words, small peptides bound to surface major histocompatibility complex (MHC) class I molecules. The success and safety of cancer immunotherapy strategies depends on the nature of the antigens recognized by the targeted T cells, their strict tumor specificity, and whether tumors and antigen-presenting cells can efficiently process the peptide. We review here the nature of the tumor antigens and their potential for the development of immunotherapeutic strategies. We also discuss the importance of proteasome in the production of these peptides in the context of immunotherapy and therapeutic cancer vaccines.

Chen S, Zhu B, Yin C, Liu W, Han C, Chen B, Liu T, Li X, Chen X, Li C et al. 2017. Palmitoylation-dependent activation of MC1R prevents melanomagenesis. Nature, 549 (7672), pp. 399-403. | Citations: 22 (Scopus) | Show Abstract | Read more

The melanocortin-1 receptor (MC1R), a G-protein-coupled receptor, has a crucial role in human and mouse pigmentation. Activation of MC1R in melanocytes by α-melanocyte-stimulating hormone (α-MSH) stimulates cAMP signalling and melanin production and enhances DNA repair after ultraviolet irradiation. Individuals carrying MC1R variants, especially those associated with red hair colour, fair skin and poor tanning ability (denoted as RHC variants), are associated with higher risk of melanoma. However, how MC1R activity is modulated by ultraviolet irradiation, why individuals with red hair are more prone to developing melanoma, and whether the activity of RHC variants might be restored for therapeutic benefit are unknown. Here we demonstrate a potential MC1R-targeted intervention strategy in mice to rescue loss-of-function MC1R in MC1R RHC variants for therapeutic benefit by activating MC1R protein palmitoylation. MC1R palmitoylation, primarily mediated by the protein-acyl transferase ZDHHC13, is essential for activating MC1R signalling, which triggers increased pigmentation, ultraviolet-B-induced G1-like cell cycle arrest and control of senescence and melanomagenesis in vitro and in vivo. Using C57BL/6J-Mc1re/eJ mice, in which endogenous MC1R is prematurely terminated, expressing Mc1r RHC variants, we show that pharmacological activation of palmitoylation rescues the defects of Mc1r RHC variants and prevents melanomagenesis. The results highlight a central role for MC1R palmitoylation in pigmentation and protection against melanoma.

Brown DA, Di Cerbo V, Feldmann A, Ahn J, Ito S, Blackledge NP, Nakayama M, McClellan M, Dimitrova E, Turberfield AH et al. 2017. The SET1 Complex Selects Actively Transcribed Target Genes via Multivalent Interaction with CpG Island Chromatin. Cell Rep, 20 (10), pp. 2313-2327. | Citations: 9 (European Pubmed Central) | Show Abstract | Read more

Chromatin modifications and the promoter-associated epigenome are important for the regulation of gene expression. However, the mechanisms by which chromatin-modifying complexes are targeted to the appropriate gene promoters in vertebrates and how they influence gene expression have remained poorly defined. Here, using a combination of live-cell imaging and functional genomics, we discover that the vertebrate SET1 complex is targeted to actively transcribed gene promoters through CFP1, which engages in a form of multivalent chromatin reading that involves recognition of non-methylated DNA and histone H3 lysine 4 trimethylation (H3K4me3). CFP1 defines SET1 complex occupancy on chromatin, and its multivalent interactions are required for the SET1 complex to place H3K4me3. In the absence of CFP1, gene expression is perturbed, suggesting that normal targeting and function of the SET1 complex are central to creating an appropriately functioning vertebrate promoter-associated epigenome.

Phung B, Kazi JU, Lundby A, Bergsteinsdottir K, Sun J, Goding CR, Jönsson G, Olsen JV, Steingrímsson E, Rönnstrand L. 2017. KITD816V Induces SRC-Mediated Tyrosine Phosphorylation of MITF and Altered Transcription Program in Melanoma. Mol Cancer Res, 15 (9), pp. 1265-1274. | Show Abstract | Read more

The oncogenic D816V mutation of the KIT receptor is well characterized in systemic mastocytosis and acute myeloid leukemia. Although KITD816V has been found in melanoma, its function and involvement in this malignancy is not understood. Here we show that KITD816V induces tyrosine phosphorylation of MITF through a triple protein complex formation between KIT, MITF, and SRC family kinases. In turn, phosphorylated MITF activates target genes that are involved in melanoma proliferation, cell-cycle progression, suppression of senescence, survival, and invasion. By blocking the triple protein complex formation, thus preventing MITF phosphorylation, the cells became hypersensitive to SRC inhibitors. We have therefore delineated a mechanism behind the oncogenic effects of KITD816V in melanoma and provided a rationale for the heightened SRC inhibitor sensitivity in KITD816V transformed cells.Implications: This study demonstrates that an oncogenic tyrosine kinase mutant, KITD816V, can alter the transcriptional program of the transcription factor MITF in melanoma Mol Cancer Res; 15(9); 1265-74. ©2017 AACR.

Kriaucionis S. 2017. DNA Extras SCIENTIST, 31 (9), pp. 48-53.

Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. 2017. Integrating Next-Generation Dendritic Cell Vaccines into the Current Cancer Immunotherapy Landscape. Trends Immunol, 38 (8), pp. 577-593. | Citations: 35 (Scopus) | Show Abstract | Read more

Cancer immunotherapy is experiencing a renaissance spearheaded by immune checkpoint inhibitors (ICIs). This has spurred interest in 'upgrading' existing immunotherapies that previously experienced only sporadic success, such as dendritic cells (DCs) vaccines. In this review, we discuss the major molecular, immunological, and clinical determinants of existing first- and second-generation DC vaccines. We also outline the future trends for next-generation DC vaccines and describe their major hallmarks and prerequisites necessary for high anticancer efficacy. In addition, using existing data we compare DC vaccines with ICIs targeting CTLA4, PD1, and PD-L1, and argue that in various contexts next-generation DC vaccines are ready to meet some challenges currently confronting ICIs, thereby raising the need to integrate DC vaccines in future combinatorial immunotherapy regimens.

Foy J-P, Bertolus C, Michallet M-C, Deneuve S, Incitti R, Bendriss-Vermare N, Albaret M-A, Ortiz-Cuaran S, Thomas E, Colombe A et al. 2017. The immune microenvironment of HPV-negative oral squamous cell carcinoma from never-smokers and never-drinkers patients suggests higher clinical benefit of IDO1 and PD1/PD-L1 blockade. Ann Oncol, 28 (8), pp. 1934-1941. | Citations: 6 (Scopus) | Show Abstract | Read more

Background: Never-smokers and never-drinkers patients (NSND) suffering from oral squamous cell carcinoma (OSCC) are epidemiologically different from smokers drinkers (SD). We therefore hypothesized that they harbored distinct targetable molecular alterations. Patients and methods: Data from The Cancer Genome Atlas (TCGA) (discovery set), Gene Expression Omnibus and Centre Léon Bérard (CLB) (three validation sets) with available gene expression profiles of HPV-negative OSCC from NSND and SD were mined. Protein expression profiles and genomic alterations were also analyzed from TCGA, and a functional pathway enrichment analysis was carried out. Formalin-fixed paraffin-embedded samples from 44 OSCC including 20 NSND and 24 SD treated at CLB were retrospectively collected to perform targeted-sequencing of 2559 transcripts (HTG EdgeSeq system), and CD3, CD4, CD8, IDO1, and PD-L1 expression analyses by immunohistochemistry (IHC). Enrichment of a six-gene interferon-γ signature of clinical response to pembrozulimab (PD-1 inhibitor) was evaluated in each sample from all cohorts, using the single sample gene set enrichment analysis method. Results: A total of 854 genes and 29 proteins were found to be differentially expressed between NSND and SD in TCGA. Functional pathway analysis highlighted an overall enrichment for immune-related pathways in OSCC from NSND, especially involving T-cell activation. Interferon-γ response and PD1 signaling were strongly enriched in NSND. IDO1 and PD-L1 were overexpressed and the score of response to pembrolizumab was higher in NSND than in SD, although the mutational load was lower in NSND. IHC analyses in the CLB cohort evidenced IDO1 and PD-L1 overexpression in tumor cells that was associated with a higher rate of tumor-infiltrating T-cells in NSND compared with SD. Conclusion: The main biological and actionable difference between OSCC from NSND and SD lies in the immune microenvironment, suggesting a higher clinical benefit of PD-L1 and IDO1 inhibition in OSCC from NSND.

Hennequart M, Pilotte L, Cane S, Hoffmann D, Stroobant V, Plaen ED, Van den Eynde B. 2017. Constitutive IDO1 Expression in Human Tumors Is Driven by Cyclooxygenase-2 and Mediates Intrinsic Immune Resistance. Cancer Immunol Res, 5 (8), pp. 695-709. | Citations: 16 (European Pubmed Central) | Show Abstract | Read more

Tumors use various mechanisms to avoid immune destruction. Cyclooxygenase-2 (COX-2) expression may be a driver of immune suppression in melanoma, but the mechanisms involved remain elusive. Here, we show that COX-2 expression drives constitutive expression of indoleamine 2,3-dioxygenase 1 (IDO1) in human tumor cells. IDO1 is an immunosuppressive enzyme that degrades tryptophan. In a series of seven human tumor lines, constitutive IDO1 expression depends on COX-2 and prostaglandin E2 (PGE2), which, upon autocrine signaling through the EP receptor, activates IDO1 via the PKC and PI3K pathways. COX-2 expression itself depends on the MAPK pathway, which therefore indirectly controls IDO1 expression. Most of these tumors carry PI3K or MAPK oncogenic mutations, which may favor constitutive IDO1 expression. Celecoxib treatment promoted immune rejection of IDO1-expressing human tumor xenografts in immunodeficient mice reconstituted with human allogeneic lymphocytes. This effect was associated with a reduced expression of IDO1 in those ovarian SKOV3 tumors and an increased infiltration of CD3+ and CD8+ cells. Our results highlight the role of COX-2 in constitutive IDO1 expression by human tumors and substantiate the use of COX-2 inhibitors to improve the efficacy of cancer immunotherapy, by reducing constitutive IDO1 expression, which contributes to the lack of T-cell infiltration in "cold" tumors, which fail to respond to immunotherapy. Cancer Immunol Res; 5(8); 695-709. ©2017 AACR.

Hennequart M, Pilotte L, Cane S, Hoffmann D, Stroobant V, De Plaen E, Van den Eynde BJ. 2017. Constitutive IDO1 Expression in Human Tumors Is Driven by Cyclooxygenase-2 and Mediates Intrinsic Immune Resistance. Cancer Immunol Res, 5 (8), pp. 695-709. | Citations: 22 (Scopus) | Show Abstract | Read more

Tumors use various mechanisms to avoid immune destruction. Cyclooxygenase-2 (COX-2) expression may be a driver of immune suppression in melanoma, but the mechanisms involved remain elusive. Here, we show that COX-2 expression drives constitutive expression of indoleamine 2,3-dioxygenase 1 (IDO1) in human tumor cells. IDO1 is an immunosuppressive enzyme that degrades tryptophan. In a series of seven human tumor lines, constitutive IDO1 expression depends on COX-2 and prostaglandin E2 (PGE2), which, upon autocrine signaling through the EP receptor, activates IDO1 via the PKC and PI3K pathways. COX-2 expression itself depends on the MAPK pathway, which therefore indirectly controls IDO1 expression. Most of these tumors carry PI3K or MAPK oncogenic mutations, which may favor constitutive IDO1 expression. Celecoxib treatment promoted immune rejection of IDO1-expressing human tumor xenografts in immunodeficient mice reconstituted with human allogeneic lymphocytes. This effect was associated with a reduced expression of IDO1 in those ovarian SKOV3 tumors and an increased infiltration of CD3+ and CD8+ cells. Our results highlight the role of COX-2 in constitutive IDO1 expression by human tumors and substantiate the use of COX-2 inhibitors to improve the efficacy of cancer immunotherapy, by reducing constitutive IDO1 expression, which contributes to the lack of T-cell infiltration in "cold" tumors, which fail to respond to immunotherapy. Cancer Immunol Res; 5(8); 1-15. ©2017 AACR.

Chiang IK-N, Fritzsche M, Pichol-Thievend C, Neal A, Holmes K, Lagendijk A, Overman J, D'Angelo D, Omini A, Hermkens D et al. 2017. SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development, 144 (14), pp. 2629-2639. | Citations: 8 (Web of Science Lite) | Show Abstract | Read more

Arterial specification and differentiation are influenced by a number of regulatory pathways. While it is known that the Vegfa-Notch cascade plays a central role, the transcriptional hierarchy controlling arterial specification has not been fully delineated. To elucidate the direct transcriptional regulators of Notch receptor expression in arterial endothelial cells, we used histone signatures, DNaseI hypersensitivity and ChIP-seq data to identify enhancers for the human NOTCH1 and zebrafish notch1b genes. These enhancers were able to direct arterial endothelial cell-restricted expression in transgenic models. Genetic disruption of SoxF binding sites established a clear requirement for members of this group of transcription factors (SOX7, SOX17 and SOX18) to drive the activity of these enhancers in vivo Endogenous deletion of the notch1b enhancer led to a significant loss of arterial connections to the dorsal aorta in Notch pathway-deficient zebrafish. Loss of SoxF function revealed that these factors are necessary for NOTCH1 and notch1b enhancer activity and for correct endogenous transcription of these genes. These findings position SoxF transcription factors directly upstream of Notch receptor expression during the acquisition of arterial identity in vertebrates.

Hulley PA, Bishop T, Vernet A, Schneider JE, Edwards JR, Athanasou NA, Knowles HJ. 2017. Hypoxia-inducible factor 1-alpha does not regulate osteoclastogenesis but enhances bone resorption activity via prolyl-4-hydroxylase 2. J Pathol, 242 (3), pp. 322-333. | Citations: 8 (Web of Science Lite) | Show Abstract | Read more

Osteogenic-angiogenic coupling is promoted by the hypoxia-inducible factor 1-alpha (HIF-1α) transcription factor, provoking interest in HIF activation as a therapeutic strategy to improve osteoblast mineralization and treat pathological osteolysis. However, HIF also enhances the bone-resorbing activity of mature osteoclasts. It is therefore essential to determine the full effect(s) of HIF on both the formation and the bone-resorbing function of osteoclasts in order to understand how they might respond to such a strategy. Expression of HIF-1α mRNA and protein increased during osteoclast differentiation from CD14+ monocytic precursors, additionally inducing expression of the HIF-regulated glycolytic enzymes. However, HIF-1α siRNA only moderately affected osteoclast differentiation, accelerating fusion of precursor cells. HIF induction by inhibition of the regulatory prolyl-4-hydroxylase (PHD) enzymes reduced osteoclastogenesis, but was confirmed to enhance bone resorption by mature osteoclasts. Phd2+/- murine osteoclasts also exhibited enhanced bone resorption, associated with increased expression of resorption-associated Acp5, in comparison with wild-type cells from littermate controls. Phd3-/- bone marrow precursors displayed accelerated early fusion, mirroring results with HIF-1α siRNA. In vivo, Phd2+/- and Phd3-/- mice exhibited reduced trabecular bone mass, associated with reduced mineralization by Phd2+/- osteoblasts. These data indicate that HIF predominantly functions as a regulator of osteoclast-mediated bone resorption, with little effect on osteoclast differentiation. Inhibition of HIF might therefore represent an alternative strategy to treat diseases characterized by pathological levels of osteolysis. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

Gyrd-Hansen M. 2017. All roads lead to ubiquitin. Cell Death Differ, 24 (7), pp. 1135-1136. | Citations: 2 (Scopus) | Read more

Breuer M, Gyrd-Hansen M. 2017. Cell scientist to watch - Mads Gyrd-Hansen. J Cell Sci, 130 (12), pp. 1981-1983. | Show Abstract | Read more

Mads Gyrd-Hansen studied biochemistry at the University of Copenhagen and received his PhD in 2005 under the supervision of Marja Jäättelä at the Danish Cancer Society Research Centre. He then joined the laboratory of Pascal Meier at the Institute of Cancer Research in London to work on the inhibitor of apoptosis (IAP) proteins. Mads returned to Copenhagen in 2008 to the Biotech Research and Innovation Centre (BRIC) in a senior postdoctoral position with Morten Frödin, and subsequently started his own research group with a career-development fellowship from the Danish Research Councils as part of the laboratory of Niels Mailand at the Novo Nordisk Foundation Centre for Protein Research. In 2013, he joined the Ludwig Institute for Cancer Research at the University of Oxford, where he is now an associate professor and holder of a Wellcome Trust Senior Research Fellowship and a Sapere Aude starting grant from the Danish Research Councils. Mads is interested in the non-degradative functions and regulation of ubiquitylation in pro-inflammatory signalling during innate immune responses.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Exploitation of the host cell ubiquitin machinery by microbial effector' proteins by Yi-Han Lin and Matthias P. Machner (J. Cell Sci.130, 1985-1996).

Schwerd T, Pandey S, Yang H-T, Bagola K, Jameson E, Jung J, Lachmann RH, Shah N, Patel SY, Booth C et al. 2017. Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann-Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn's disease. Gut, 66 (6), pp. 1060-1073. | Citations: 25 (European Pubmed Central) | Show Abstract | Read more

OBJECTIVE: Patients with Niemann-Pick disease type C1 (NPC1), a lysosomal lipid storage disorder that causes neurodegeneration and liver damage, can present with IBD, but neither the significance nor the functional mechanism of this association is clear. We studied bacterial handling and antibacterial autophagy in patients with NPC1. DESIGN: We characterised intestinal inflammation in 14 patients with NPC1 who developed IBD. We investigated bacterial handling and cytokine production of NPC1 monocytes or macrophages in vitro and compared NPC1-associated functional defects to those caused by IBD-associated nucleotide-binding oligomerization domain-containing protein 2 (NOD2) variants or mutations in X-linked inhibitor of apoptosis (XIAP). RESULTS: Patients with the lysosomal lipid storage disorder NPC1 have increased susceptibility to early-onset fistulising colitis with granuloma formation, reminiscent of Crohn's disease (CD). Mutations in NPC1 cause impaired autophagy due to defective autophagosome function that abolishes NOD2-mediated bacterial handling in vitro similar to variants in NOD2 or XIAP deficiency. In contrast to genetic NOD2 and XIAP variants, NPC1 mutations do not impair NOD2-receptor-interacting kinase 2 (RIPK2)-XIAP-dependent cytokine production. Pharmacological activation of autophagy can rescue bacterial clearance in macrophages in vitro by increasing the autophagic flux and bypassing defects in NPC1. CONCLUSIONS: NPC1 confers increased risk of early-onset severe CD. Our data support the concept that genetic defects at different checkpoints of selective autophagy cause a shared outcome of CD-like immunopathology linking monogenic and polygenic forms of IBD. Muramyl dipeptide-driven cytokine responses and antibacterial autophagy induction are parallel and independent signalling cascades downstream of the NOD2-RIPK2-XIAP complex.

Qing Y, Tian Z, Bi Y, Wang Y, Long J, Song C-X, Diao J. 2017. Quantitation and mapping of the epigenetic marker 5-hydroxymethylcytosine. Bioessays, 39 (5), pp. 1700010-1700010. | Citations: 2 (Web of Science Lite) | Show Abstract | Read more

We here review primary methods used in quantifying and mapping 5-hydroxymethylcytosine (5hmC), including global quantification, restriction enzyme-based detection, and methods involving DNA-enrichment strategies and the genome-wide sequencing of 5hmC. As discovered in the mammalian genome in 2009, 5hmC, oxidized from 5-methylcytosine (5mC) by ten-eleven translocation (TET) dioxygenases, is increasingly being recognized as a biomarker in biological processes from development to pathogenesis, as its various detection methods have shown. We focus in particular on an ultrasensitive single-molecule imaging technique that can detect and quantify 5hmC from trace samples and thus offer information regarding the distance-based relationship between 5hmC and 5mC when used in combination with fluorescence resonance energy transfer.

Faião-Flores F, Alves-Fernandes DK, Pennacchi PC, Sandri S, Vicente ALSA, Scapulatempo-Neto C, Vazquez VL, Reis RM, Chauhan J, Goding CR et al. 2017. Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells. Oncogene, 36 (13), pp. 1849-1861. | Citations: 19 (Scopus) | Show Abstract | Read more

BRAF inhibitor (BRAFi) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms underpinning BRAFi-based therapy is therefore an important issue. Here we identified a previously unsuspected mechanism of BRAFi resistance driven by elevated Hedgehog (Hh) pathway activation that is observed in a cohort of melanoma patients after vemurafenib treatment. Specifically, we demonstrate that melanoma cell lines, with acquired in vitro-induced vemurafenib resistance, show increased levels of glioma-associated oncogene homolog 1 and 2 (GLI1/GLI2) compared with naïve cells. We also observed these findings in clinical melanoma specimens. Moreover, the increased expression of the transcription factors GLI1/GLI2 was independent of canonical Hh signaling and was instead correlated with the noncanonical Hh pathway, involving TGFβ/SMAD (transforming growth factor-β/Sma- and Mad-related family) signaling. Knockdown of GLI1 and GLI2 restored sensitivity to vemurafenib-resistant cells, an effect associated with both growth arrest and senescence. Treatment of vemurafenib-resistant cells with the GLI1/GLI2 inhibitor Gant61 led to decreased invasion of the melanoma cells in a three-dimensional skin reconstruct model and was associated with a decrease in metalloproteinase (MMP2/MMP9) expression and microphthalmia transcription factor upregulation. Gant61 monotherapy did not alter the drug sensitivity of naïve cells, but could reverse the resistance of melanoma cells chronically treated with vemurafenib. We further noted that alternating dosing schedules of Gant61 and vemurafenib prevented the onset of BRAFi resistance, suggesting that this could be a potential therapeutic strategy for the prevention of therapeutic escape. Our results suggest that targeting the Hh pathway in BRAFi-resistant melanoma may represent a viable therapeutic strategy to restore vemurafenib sensitivity, reducing or even inhibiting the acquired chemoresistance in melanoma patients.

Leroy B, Ballinger ML, Baran-Marszak F, Bond GL, Braithwaite A, Concin N, Donehower LA, El-Deiry WS, Fenaux P, Gaidano G et al. 2017. Recommended Guidelines for Validation, Quality Control, and Reporting of TP53 Variants in Clinical Practice. Cancer Res, 77 (6), pp. 1250-1260. | Citations: 16 (Web of Science Lite) | Show Abstract | Read more

Accurate assessment of TP53 gene status in sporadic tumors and in the germline of individuals at high risk of cancer due to Li-Fraumeni Syndrome (LFS) has important clinical implications for diagnosis, surveillance, and therapy. Genomic data from more than 20,000 cancer genomes provide a wealth of information on cancer gene alterations and have confirmed TP53 as the most commonly mutated gene in human cancer. Analysis of a database of 70,000 TP53 variants reveals that the two newly discovered exons of the gene, exons 9β and 9γ, generated by alternative splicing, are the targets of inactivating mutation events in breast, liver, and head and neck tumors. Furthermore, germline rearrange-ments in intron 1 of TP53 are associated with LFS and are frequently observed in sporadic osteosarcoma. In this context of constantly growing genomic data, we discuss how screening strategies must be improved when assessing TP53 status in clinical samples. Finally, we discuss how TP53 alterations should be described by using accurate nomenclature to avoid confusion in scientific and clinical reports. Cancer Res; 77(6); 1250-60. ©2017 AACR.

Fane ME, Chhabra Y, Hollingsworth DEJ, Simmons JL, Spoerri L, Oh TG, Chauhan J, Chin T, Harris L, Harvey TJ et al. 2017. NFIB Mediates BRN2 Driven Melanoma Cell Migration and Invasion Through Regulation of EZH2 and MITF. EBioMedicine, 16 pp. 63-75. | Citations: 21 (Scopus) | Show Abstract | Read more

While invasion and metastasis of tumour cells are the principle factor responsible for cancer related deaths, the mechanisms governing the process remain poorly defined. Moreover, phenotypic divergence of sub-populations of tumour cells is known to underpin alternative behaviors linked to tumour progression such as proliferation, survival and invasion. In the context of melanoma, heterogeneity between two transcription factors, BRN2 and MITF, has been associated with phenotypic switching between predominantly invasive and proliferative behaviors respectively. Epigenetic changes, in response to external cues, have been proposed to underpin this process, however the mechanism by which the phenotypic switch occurs is unclear. Here we report the identification of the NFIB transcription factor as a novel downstream effector of BRN2 function in melanoma cells linked to the migratory and invasive characteristics of these cells. Furthermore, the function of NFIB appears to drive an invasive phenotype through an epigenetic mechanism achieved via the upregulation of the polycomb group protein EZH2. A notable target of NFIB mediated up-regulation of EZH2 is decreased MITF expression, which further promotes a less proliferative, more invasive phenotype. Together our data reveal that NFIB has the ability to promote dynamic changes in the chromatin state of melanoma cells to facilitate migration, invasion and metastasis.

Overman J, Fontaine F, Moustaqil M, Mittal D, Sierecki E, Sacilotto N, Zuegg J, Robertson AA, Holmes K, Salim AA et al. 2017. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. Elife, 6 | Citations: 11 (Scopus) | Show Abstract | Read more

Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics.

Forment JV, Herzog M, Coates J, Konopka T, Gapp BV, Nijman SM, Adams DJ, Keane TM, Jackson SP. 2017. Genome-wide genetic screening with chemically mutagenized haploid embryonic stem cells. Nat Chem Biol, 13 (1), pp. 12-14. | Citations: 15 (Scopus) | Show Abstract | Read more

In model organisms, classical genetic screening via random mutagenesis provides key insights into the molecular bases of genetic interactions, helping to define synthetic lethality, synthetic viability and drug-resistance mechanisms. The limited genetic tractability of diploid mammalian cells, however, precludes this approach. Here, we demonstrate the feasibility of classical genetic screening in mammalian systems by using haploid cells, chemical mutagenesis and next-generation sequencing, providing a new tool to explore mammalian genetic interactions.

Falletta P, Sanchez-Del-Campo L, Chauhan J, Effern M, Kenyon A, Kershaw CJ, Siddaway R, Lisle R, Freter R, Daniels MJ et al. 2017. Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev, 31 (1), pp. 18-33. | Citations: 35 (Web of Science Lite) | Show Abstract | Read more

The intratumor microenvironment generates phenotypically distinct but interconvertible malignant cell subpopulations that fuel metastatic spread and therapeutic resistance. Whether different microenvironmental cues impose invasive or therapy-resistant phenotypes via a common mechanism is unknown. In melanoma, low expression of the lineage survival oncogene microphthalmia-associated transcription factor (MITF) correlates with invasion, senescence, and drug resistance. However, how MITF is suppressed in vivo and how MITF-low cells in tumors escape senescence are poorly understood. Here we show that microenvironmental cues, including inflammation-mediated resistance to adoptive T-cell immunotherapy, transcriptionally repress MITF via ATF4 in response to inhibition of translation initiation factor eIF2B. ATF4, a key transcription mediator of the integrated stress response, also activates AXL and suppresses senescence to impose the MITF-low/AXL-high drug-resistant phenotype observed in human tumors. However, unexpectedly, without translation reprogramming an ATF4-high/MITF-low state is insufficient to drive invasion. Importantly, translation reprogramming dramatically enhances tumorigenesis and is linked to a previously unexplained gene expression program associated with anti-PD-1 immunotherapy resistance. Since we show that inhibition of eIF2B also drives neural crest migration and yeast invasiveness, our results suggest that translation reprogramming, an evolutionarily conserved starvation response, has been hijacked by microenvironmental stress signals in melanoma to drive phenotypic plasticity and invasion and determine therapeutic outcome.

Hanoteau A, Henin C, Svec D, Bisilliat Donnet C, Denanglaire S, Colau D, Romero P, Leo O, Van den Eynde B, Moser M. 2017. Cyclophosphamide treatment regulates the balance of functional/exhausted tumor-specific CD8+ T cells. Oncoimmunology, 6 (8), pp. e1318234. | Citations: 4 (European Pubmed Central) | Show Abstract | Read more

An important question is how chemotherapy may (re-)activate tumor-specific immunity. In this study, we provide a phenotypic, functional and genomic analysis of tumor-specific CD8+ T cells in tumor (P815)-bearing mice, treated or not with cyclophosphamide. Our data show that chemotherapy favors the development of effector-type lymphocytes in tumor bed, characterized by higher KLRG-1 expression, lower PD-1 expression and increased cytotoxicity. This suggests re-engagement of T lymphocytes into the effector program. IFN-I appears involved in this remodeling. Our findings provide some insight into how cyclophosphamide regulates the amplitude and quality of tumor-specific immune responses.

Pei G, Buijze H, Liu H, Moura-Alves P, Goosmann C, Brinkmann V, Kawabe H, Dorhoi A, Kaufmann SHE. 2017. The E3 ubiquitin ligase NEDD4 enhances killing of membrane-perturbing intracellular bacteria by promoting autophagy. Autophagy, 13 (12), pp. 2041-2055. | Citations: 5 (Scopus) | Show Abstract | Read more

The E3 ubiquitin ligase NEDD4 has been intensively studied in processes involved in viral infections, such as virus budding. However, little is known about its functions in bacterial infections. Our investigations into the role of NEDD4 in intracellular bacterial infections demonstrate that Mycobacterium tuberculosis and Listeria monocytogenes, but not Mycobacterium bovis BCG, replicate more efficiently in NEDD4 knockdown macrophages. In parallel, NEDD4 knockdown or knockout impaired basal macroautophagy/autophagy, as well as infection-induced autophagy. Conversely, NEDD4 expression promoted autophagy in an E3 catalytic activity-dependent manner, thereby restricting intracellular Listeria replication. Mechanistic studies uncovered that endogenous NEDD4 interacted with BECN1/Beclin 1 and this interaction increased during Listeria infection. Deficiency of NEDD4 resulted in elevated K48-linkage ubiquitination of endogenous BECN1. Further, NEDD4 mediated K6- and K27- linkage ubiquitination of BECN1, leading to elevated stability of BECN1 and increased autophagy. Thus, NEDD4 participates in killing of intracellular bacterial pathogens via autophagy by sustaining the stability of BECN1.

Stracquadanio G, Vrugt B, Flury R, Schraml P, Würl P, Müller TH, Knippschild U, Henne-Bruns D, Breitenstein S, Clavien P-A et al. 2016. CD44 SNPrs187115: A Novel Biomarker Signature that Predicts Survival in Resectable Pancreatic Ductal Adenocarcinoma. Clin Cancer Res, 22 (24), pp. 6069-6077. | Citations: 3 (Scopus) | Show Abstract | Read more

PURPOSE: Although pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor, like other common cancers, it displays a wide range of biology. However, at present, there are no reliable tests to predict patients' cancer-specific outcomes and guide personalized treatment decisions. In this study, we aim to identify such biomarkers in resectable PDAC by studying SNPs in the CD44 gene, which drives the progression of pancreatic cancer. EXPERIMENTAL DESIGN: A total of 348 PDAC patients from three independent cohorts [Switzerland, Germany, The Cancer Genome Atlas (TCGA)] who underwent pancreatic resection are included in the study. Information on the haplotype structure of the CD44 gene is obtained using 1000 Genomes Project data, and the genotypes of the respective tagging SNPs are determined. Cox proportional hazards models are utilized to analyze the impact of SNP genotype on patients' survival. RESULTS: We identify an SNP in the CD44 gene (SNPrs187115) that independently associates with allelic differences in prognosis in all study cohorts. Specifically, in 121 Swiss patients, we observe an up to 2.38-fold (P = 0.020) difference in tumor-related death between the genotypes of SNPrs187115 We validate those results in both the German (HR = 2.32, P = 0.044, 101 patients) and the TCGA cohort (HR = 2.36, P = 0.044, 126 patients). CONCLUSIONS: CD44 SNPrs187115 can serve as a novel biomarker readily available at the time of PDAC diagnosis that identifies patients at risk for faster tumor progression and guide personalized treatment decisions. It has the potential to significantly expand the pool of patients that would benefit from tumor resection. Clin Cancer Res; 22(24); 6069-77. ©2016 AACR.

Savitsky P, Krojer T, Fujisawa T, Lambert J-P, Picaud S, Wang C-Y, Shanle EK, Krajewski K, Friedrichsen H, Kanapin A et al. 2016. Multivalent Histone and DNA Engagement by a PHD/BRD/PWWP Triple Reader Cassette Recruits ZMYND8 to K14ac-Rich Chromatin. Cell Rep, 17 (10), pp. 2724-2737. | Citations: 20 (Web of Science Lite) | Show Abstract | Read more

Elucidation of interactions involving DNA and histone post-translational-modifications (PTMs) is essential for providing insights into complex biological functions. Reader assemblies connected by flexible linkages facilitate avidity and increase affinity; however, little is known about the contribution to the recognition process of multiple PTMs because of rigidity in the absence of conformational flexibility. Here, we resolve the crystal structure of the triple reader module (PHD-BRD-PWWP) of ZMYND8, which forms a stable unit capable of simultaneously recognizing multiple histone PTMs while presenting a charged platform for association with DNA. Single domain disruptions destroy the functional network of interactions initiated by ZMYND8, impairing recruitment to sites of DNA damage. Our data establish a proof of principle that rigidity can be compensated by concomitant DNA and histone PTM interactions, maintaining multivalent engagement of transient chromatin states. Thus, our findings demonstrate an important role for rigid multivalent reader modules in nucleosome binding and chromatin function.

Smida M, Fece de la Cruz F, Kerzendorfer C, Uras IZ, Mair B, Mazouzi A, Suchankova T, Konopka T, Katz AM, Paz K et al. 2016. MEK inhibitors block growth of lung tumours with mutations in ataxia-telangiectasia mutated. Nat Commun, 7 (1), pp. 13701. | Citations: 10 (Scopus) | Show Abstract | Read more

Lung cancer is the leading cause of cancer deaths, and effective treatments are urgently needed. Loss-of-function mutations in the DNA damage response kinase ATM are common in lung adenocarcinoma but directly targeting these with drugs remains challenging. Here we report that ATM loss-of-function is synthetic lethal with drugs inhibiting the central growth factor kinases MEK1/2, including the FDA-approved drug trametinib. Lung cancer cells resistant to MEK inhibition become highly sensitive upon loss of ATM both in vitro and in vivo. Mechanistically, ATM mediates crosstalk between the prosurvival MEK/ERK and AKT/mTOR pathways. ATM loss also enhances the sensitivity of KRAS- or BRAF-mutant lung cancer cells to MEK inhibition. Thus, ATM mutational status in lung cancer is a mechanistic biomarker for MEK inhibitor response, which may improve patient stratification and extend the applicability of these drugs beyond RAS and BRAF mutant tumours.

Markolovic S, Leissing TM, Chowdhury R, Wilkins SE, Lu X, Schofield CJ. 2016. Structure-function relationships of human JmjC oxygenases-demethylases versus hydroxylases. Curr Opin Struct Biol, 41 pp. 62-72. | Citations: 25 (Web of Science Lite) | Show Abstract | Read more

The Jumonji-C (JmjC) subfamily of 2-oxoglutarate (2OG)-dependent oxygenases are of biomedical interest because of their roles in the regulation of gene expression and protein biosynthesis. Human JmjC 2OG oxygenases catalyze oxidative modifications to give either chemically stable alcohol products, or in the case of Nɛ-methyl lysine demethylation, relatively unstable hemiaminals that fragment to give formaldehyde and the demethylated product. Recent work has yielded conflicting reports as to whether some JmjC oxygenases catalyze N-methyl group demethylation or hydroxylation reactions. We review JmjC oxygenase-catalyzed reactions within the context of structural knowledge, highlighting key differences between hydroxylases and demethylases, which have the potential to inform on the possible type(s) of reactions catalyzed by partially characterized or un-characterized JmjC oxygenases in humans and other organisms.

Zak J, Vives V, Szumska D, Vernet A, Schneider JE, Miller P, Slee EA, Joss S, Lacassie Y, Chen E et al. 2016. ASPP2 deficiency causes features of 1q41q42 microdeletion syndrome. Cell Death Differ, 23 (12), pp. 1973-1984. | Citations: 1 (Web of Science Lite) | Show Abstract | Read more

Chromosomal abnormalities are implicated in a substantial number of human developmental syndromes, but for many such disorders little is known about the causative genes. The recently described 1q41q42 microdeletion syndrome is characterized by characteristic dysmorphic features, intellectual disability and brain morphological abnormalities, but the precise genetic basis for these abnormalities remains unknown. Here, our detailed analysis of the genetic abnormalities of 1q41q42 microdeletion cases identified TP53BP2, which encodes apoptosis-stimulating protein of p53 2 (ASPP2), as a candidate gene for brain abnormalities. Consistent with this, Trp53bp2-deficient mice show dilation of lateral ventricles resembling the phenotype of 1q41q42 microdeletion patients. Trp53bp2 deficiency causes 100% neonatal lethality in the C57BL/6 background associated with a high incidence of neural tube defects and a range of developmental abnormalities such as congenital heart defects, coloboma, microphthalmia, urogenital and craniofacial abnormalities. Interestingly, abnormalities show a high degree of overlap with 1q41q42 microdeletion-associated abnormalities. These findings identify TP53BP2 as a strong candidate causative gene for central nervous system (CNS) defects in 1q41q42 microdeletion syndrome, and open new avenues for investigation of the mechanisms underlying CNS abnormalities.

Zimmermann N, Saiga H, Houthuys E, Moura-Alves P, Koehler A, Bandermann S, Dorhoi A, Kaufmann SHE. 2016. Syndecans promote mycobacterial internalization by lung epithelial cells. Cell Microbiol, 18 (12), pp. 1846-1856. | Citations: 7 (Scopus) | Show Abstract | Read more

Pulmonary tuberculosis (TB) is an airborne disease caused by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb). Alveolar epithelial cells and macrophages are the first point of contact for Mtb in the respiratory tract. However, the mechanisms of mycobacterial attachment to, and internalization by, nonprofessional phagocytes, such as epithelial cells, remain incompletely understood. We identified syndecan 4 (Sdc4) as mycobacterial attachment receptor on alveolar epithelial cells. Sdc4 mRNA expression was increased in human and mouse alveolar epithelial cells after mycobacterial infection. Sdc4 knockdown in alveolar epithelial cells or blocking with anti-Sdc4 antibody reduced mycobacterial attachment and internalization. At the molecular level, interactions between epithelial cells and mycobacteria involved host Sdc and the mycobacterial heparin-binding hemagglutinin adhesin. In vivo, Sdc1/Sdc4 double-knockout mice were more resistant to Mtb colonization of the lung. Our work reveals a role for distinct Sdcs in promoting mycobacterial entry into alveolar epithelial cells with impact on outcome of TB disease.

Pérez-Guijarro E, Karras P, Cifdaloz M, Martínez-Herranz R, Cañón E, Graña O, Horcajada-Reales C, Alonso-Curbelo D, Calvo TG, Gómez-López G et al. 2016. Lineage-specific roles of the cytoplasmic polyadenylation factor CPEB4 in the regulation of melanoma drivers. Nat Commun, 7 (1), pp. 13418. | Citations: 7 (European Pubmed Central) | Show Abstract | Read more

Nuclear 3'-end-polyadenylation is essential for the transport, stability and translation of virtually all eukaryotic mRNAs. Poly(A) tail extension can also occur in the cytoplasm, but the transcripts involved are incompletely understood, particularly in cancer. Here we identify a lineage-specific requirement of the cytoplasmic polyadenylation binding protein 4 (CPEB4) in malignant melanoma. CPEB4 is upregulated early in melanoma progression, as defined by computational and histological analyses. Melanoma cells are distinct from other tumour cell types in their dependency on CPEB4, not only to prevent mitotic aberrations, but to progress through G1/S cell cycle checkpoints. RNA immunoprecipitation, sequencing of bound transcripts and poly(A) length tests link the melanoma-specific functions of CPEB4 to signalling hubs specifically enriched in this disease. Essential in these CPEB4-controlled networks are the melanoma drivers MITF and RAB7A, a feature validated in clinical biopsies. These results provide new mechanistic links between cytoplasmic polyadenylation and lineage specification in melanoma.

Lu M, Breyssens H, Salter V, Zhong S, Hu Y, Baer C, Ratnayaka I, Sullivan A, Brown NR, Endicott J et al. 2016. Restoring p53 Function in Human Melanoma Cells by Inhibiting MDM2 and Cyclin B1/CDK1-Phosphorylated Nuclear iASPP. Cancer Cell, 30 (5), pp. 822-823. | Citations: 7 (Web of Science Lite) | Show Abstract | Read more

© 2016 Elsevier Inc. (Cancer Cell 23, 618–633; May 13, 2013) In the original Figure 4G, two of the upper panels (His-iASPP(625-828)-FITC; the two rightmost panels) were inadvertently duplicated in the lower set of panels (His-ASPP2(905-1128)-FITC; third and fourth from left). This was a mistake made by the authors during the assembly of the figure. This error does not affect any of the findings reported in the paper. The corrected Figure 4 is presented below. The authors apologize for any confusion that this error may have caused. [figure presented]

Fiil BK, Gyrd-Hansen M. 2016. OTULIN deficiency causes auto-inflammatory syndrome. Cell Res, 26 (11), pp. 1176-1177. | Citations: 3 (Web of Science Lite) | Show Abstract | Read more

Ubiquitin chains assembled via the N-terminal methionine (Met1 or linear ubiquitin), conjugated by the linear ubiquitin chain assembly complex (LUBAC), participate in NF-κΒ-dependent inflammatory signaling and immune responses. A recent report in Cell finds that OTULIN, a deubiquitinase that selectively cleaves Met1-linked ubiquitin chains, is essential for restraining inflammation in vivo.

Sacilotto N, Chouliaras KM, Nikitenko LL, Lu YW, Fritzsche M, Wallace MD, Nornes S, García-Moreno F, Payne S, Bridges E et al. 2016. MEF2 transcription factors are key regulators of sprouting angiogenesis. Genes Dev, 30 (20), pp. 2297-2309. | Citations: 17 (Web of Science Lite) | Show Abstract | Read more

Angiogenesis, the fundamental process by which new blood vessels form from existing ones, depends on precise spatial and temporal gene expression within specific compartments of the endothelium. However, the molecular links between proangiogenic signals and downstream gene expression remain unclear. During sprouting angiogenesis, the specification of endothelial cells into the tip cells that lead new blood vessel sprouts is coordinated by vascular endothelial growth factor A (VEGFA) and Delta-like ligand 4 (Dll4)/Notch signaling and requires high levels of Notch ligand DLL4. Here, we identify MEF2 transcription factors as crucial regulators of sprouting angiogenesis directly downstream from VEGFA. Through the characterization of a Dll4 enhancer directing expression to endothelial cells at the angiogenic front, we found that MEF2 factors directly transcriptionally activate the expression of Dll4 and many other key genes up-regulated during sprouting angiogenesis in both physiological and tumor vascularization. Unlike ETS-mediated regulation, MEF2-binding motifs are not ubiquitous to all endothelial gene enhancers and promoters but are instead overrepresented around genes associated with sprouting angiogenesis. MEF2 target gene activation is directly linked to VEGFA-induced release of repressive histone deacetylases and concurrent recruitment of the histone acetyltransferase EP300 to MEF2 target gene regulatory elements, thus establishing MEF2 factors as the transcriptional effectors of VEGFA signaling during angiogenesis.

Bardella C, Al-Dalahmah O, Krell D, Brazauskas P, Al-Qahtani K, Tomkova M, Adam J, Serres S, Lockstone H, Freeman-Mills L et al. 2016. Expression of Idh1R132H in the Murine Subventricular Zone Stem Cell Niche Recapitulates Features of Early Gliomagenesis. Cancer Cell, 30 (4), pp. 578-594. | Citations: 29 (Scopus) | Show Abstract | Read more

Isocitrate dehydrogenase 1 mutations drive human gliomagenesis, probably through neomorphic enzyme activity that produces D-2-hydroxyglutarate. To model this disease, we conditionally expressed Idh1R132H in the subventricular zone (SVZ) of the adult mouse brain. The mice developed hydrocephalus and grossly dilated lateral ventricles, with accumulation of 2-hydroxyglutarate and reduced α-ketoglutarate. Stem and transit amplifying/progenitor cell populations were expanded, and proliferation increased. Cells expressing SVZ markers infiltrated surrounding brain regions. SVZ cells also gave rise to proliferative subventricular nodules. DNA methylation was globally increased, while hydroxymethylation was decreased. Mutant SVZ cells overexpressed Wnt, cell-cycle and stem cell genes, and shared an expression signature with human gliomas. Idh1R132H mutation in the major adult neurogenic stem cell niche causes a phenotype resembling gliomagenesis.

Zak J, Schuster-Boeckler B, Bond G. 2016. Cancer Genetics May Aid Diagnostics of Developmental Disorders. Hum Mutat, 37 (10), pp. 989. | Read more

Yang YA, Zhao JC, Fong K-W, Kim J, Li S, Song C, Song B, Zheng B, He C, Yu J. 2016. FOXA1 potentiates lineage-specific enhancer activation through modulating TET1 expression and function. Nucleic Acids Res, 44 (17), pp. 8153-8164. | Citations: 11 (Web of Science Lite) | Show Abstract | Read more

Forkhead box A1 (FOXA1) is an FKHD family protein that plays pioneering roles in lineage-specific enhancer activation and gene transcription. Through genome-wide location analyses, here we show that FOXA1 expression and occupancy are, in turn, required for the maintenance of these epigenetic signatures, namely DNA hypomethylation and histone 3 lysine 4 methylation. Mechanistically, this involves TET1, a 5-methylcytosine dioxygenase. We found that FOXA1 induces TET1 expression via direct binding to its cis-regulatory elements. Further, FOXA1 physically interacts with the TET1 protein through its CXXC domain. TET1 thus co-occupies FOXA1-dependent enhancers and mediates local DNA demethylation and concomitant histone 3 lysine 4 methylation, further potentiating FOXA1 recruitment. Consequently, FOXA1 binding events are markedly reduced following TET1 depletion. Together, our results suggest that FOXA1 is not only able to recognize but also remodel the epigenetic signatures at lineage-specific enhancers, which is mediated, at least in part, by a feed-forward regulatory loop between FOXA1 and TET1.

Elliott PR, Leske D, Hrdinka M, Bagola K, Fiil BK, McLaughlin SH, Wagstaff J, Volkmar N, Christianson JC, Kessler BM et al. 2016. SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling. Mol Cell, 63 (6), pp. 990-1005. | Citations: 36 (Scopus) | Show Abstract | Read more

The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.

Turnquist C, Horikawa I, Foran E, Major EO, Vojtesek B, Lane DP, Lu X, Harris BT, Harris CC. 2016. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ, 23 (9), pp. 1515-1528. | Citations: 32 (Scopus) | Show Abstract | Read more

Bidirectional interactions between astrocytes and neurons have physiological roles in the central nervous system and an altered state or dysfunction of such interactions may be associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Astrocytes exert structural, metabolic and functional effects on neurons, which can be either neurotoxic or neuroprotective. Their neurotoxic effect is mediated via the senescence-associated secretory phenotype (SASP) involving pro-inflammatory cytokines (e.g., IL-6), while their neuroprotective effect is attributed to neurotrophic growth factors (e.g., NGF). We here demonstrate that the p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate their toxic and protective effects on neurons. Primary human astrocytes undergoing cellular senescence upon serial passaging in vitro showed diminished expression of Δ133p53 and increased p53β, which were attributed to the autophagic degradation and the SRSF3-mediated alternative RNA splicing, respectively. Early-passage astrocytes with Δ133p53 knockdown or p53β overexpression were induced to show SASP and to exert neurotoxicity in co-culture with neurons. Restored expression of Δ133p53 in near-senescent, otherwise neurotoxic astrocytes conferred them with neuroprotective activity through repression of SASP and induction of neurotrophic growth factors. Brain tissues from AD and ALS patients possessed increased numbers of senescent astrocytes and, like senescent astrocytes in vitro, showed decreased Δ133p53 and increased p53β expression, supporting that our in vitro findings recapitulate in vivo pathology of these neurodegenerative diseases. Our finding that Δ133p53 enhances the neuroprotective function of aged and senescent astrocytes suggests that the p53 isoforms and their regulatory mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases.

Mair B, Konopka T, Kerzendorfer C, Sleiman K, Salic S, Serra V, Muellner MK, Theodorou V, Nijman SMB. 2016. Gain- and Loss-of-Function Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity. PLoS Genet, 12 (9), pp. e1006279. | Citations: 10 (Scopus) | Show Abstract | Read more

Patterns of somatic mutations in cancer genes provide information about their functional role in tumourigenesis, and thus indicate their potential for therapeutic exploitation. Yet, the classical distinction between oncogene and tumour suppressor may not always apply. For instance, TP53 has been simultaneously associated with tumour suppressing and promoting activities. Here, we uncover a similar phenomenon for GATA3, a frequently mutated, yet poorly understood, breast cancer gene. We identify two functional classes of frameshift mutations that are associated with distinct expression profiles in tumours, differential disease-free patient survival and gain- and loss-of-function activities in a cell line model. Furthermore, we find an estrogen receptor-independent synthetic lethal interaction between a GATA3 frameshift mutant with an extended C-terminus and the histone methyltransferases G9A and GLP, indicating perturbed epigenetic regulation. Our findings reveal important insights into mutant GATA3 function and breast cancer, provide the first potential therapeutic strategy and suggest that dual tumour suppressive and oncogenic activities are more widespread than previously appreciated.

Lu M, Muers MR, Lu X. 2016. Introducing STRaNDs: shuttling transcriptional regulators that are non-DNA binding. Nat Rev Mol Cell Biol, 17 (8), pp. 523-532. | Citations: 3 (European Pubmed Central) | Show Abstract | Read more

Many proteins originally identified as cytoplasmic - including many associated with the cytoskeleton or cell junctions - are increasingly being found in the nucleus, where they have specific functions. Here, we focus on proteins that translocate from the cytoplasm to the nucleus in response to external signals and regulate transcription without binding to DNA directly (for example, through interaction with transcription factors). We propose that proteins with such characteristics are classified as a distinct group of extracellular signalling effectors, and we suggest the term STRaND (shuttling transcriptional regulators and non-DNA binding) to refer to this group. Crucial roles of STRaNDs include linking cell morphology and adhesion with changes in transcriptional programmes in response to signals such as mechanical stresses.

Gapp BV, Konopka T, Penz T, Dalal V, Bürckstümmer T, Bock C, Nijman SM. 2016. Parallel reverse genetic screening in mutant human cells using transcriptomics. Mol Syst Biol, 12 (8), pp. 879. | Citations: 4 (European Pubmed Central) | Show Abstract | Read more

Reverse genetic screens have driven gene annotation and target discovery in model organisms. However, many disease-relevant genotypes and phenotypes cannot be studied in lower organisms. It is therefore essential to overcome technical hurdles associated with large-scale reverse genetics in human cells. Here, we establish a reverse genetic approach based on highly robust and sensitive multiplexed RNA sequencing of mutant human cells. We conduct 10 parallel screens using a collection of engineered haploid isogenic cell lines with knockouts covering tyrosine kinases and identify known and unexpected effects on signaling pathways. Our study provides proof of concept for a scalable approach to link genotype to phenotype in human cells, which has broad applications. In particular, it clears the way for systematic phenotyping of still poorly characterized human genes and for systematic study of uncharacterized genomic features associated with human disease.

Uzureau S, Coquerelle C, Vermeiren C, Uzureau P, Van Acker A, Pilotte L, Monteyne D, Acolty V, Vanhollebeke B, Van den Eynde B et al. 2016. Apolipoproteins L control cell death triggered by TLR3/TRIF signaling in dendritic cells. Eur J Immunol, 46 (8), pp. 1854-1866. | Citations: 6 (Scopus) | Show Abstract | Read more

Apolipoproteins L (ApoLs) are Bcl-2-like proteins expressed under inflammatory conditions in myeloid and endothelial cells. We found that Toll-like receptor (TLR) stimuli, particularly the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)), specifically induce ApoLs7/11 subfamilies in murine CD8α(+)  dendritic cells (DCs). This induction requires the TLR3/TRIF (where TRIF is TIR domain containing adapter-inducing interferon β) signaling pathway and is dependent on IFN-β in all ApoLs subfamilies except for ApoL7c. Poly(I:C) treatment of DCs is also associated with induction of both cell death and autophagy. ApoLs expression is related to promotion of DC death by poly(I:C), as ApoLs7/11 knockdown increases DC survival and ApoLs7 are associated with the anti-apoptotic protein Bcl-xL (where Bcl-xL is B-cell lymphoma extra large). Similarly, in human monocyte-derived DCs poly(I:C) induces both cell death and the expression of ApoLs, principally ApoL3. Finally, the BH3-like peptide of ApoLs appears to be involved in the DC death-promoting activity. We would like to propose that ApoLs are involved in cell death linked to activation of DCs by viral stimuli.

Ahsan F, Moura-Alves P, Guhlich-Bornhof U, Klemm M, Kaufmann SHE, Maertzdorf J. 2016. Role of Interleukin 36γ in Host Defense Against Tuberculosis. J Infect Dis, 214 (3), pp. 464-474. | Citations: 13 (Scopus) | Show Abstract | Read more

Tuberculosis remains a major killer worldwide, not the least because of our incomplete knowledge of protective and pathogenic immune mechanism. The roles of the interleukin 1 (IL-1) and interleukin 18 pathways in host defense are well established, as are their regulation through the inflammasome complex. In contrast, the regulation of interleukin 36γ (IL-36γ), a recently described member of the IL-1 family, and its immunological relevance in host defense remain largely unknown. Here we show that Mycobacterium tuberculosis infection of macrophages induces IL-36γ production in a 2-stage-regulated fashion. In the first stage, microbial ligands trigger host Toll-like receptor and MyD88-dependent pathways, leading to IL-36γ secretion. In the second stage, endogenous IL-1β and interleukin 18 further amplify IL-36γ synthesis. The relevance of this cytokine in the control of M. tuberculosis is demonstrated by IL-36γ-induced antimicrobial peptides and IL-36 receptor-dependent restriction of M. tuberculosis growth. Thus, we provide first insight into the induction and regulation of the proinflammatory cytokine IL-36γ during tuberculosis.

Raducu M, Fung E, Serres S, Infante P, Barberis A, Fischer R, Bristow C, Thézénas M-L, Finta C, Christianson JC et al. 2016. SCF (Fbxl17) ubiquitylation of Sufu regulates Hedgehog signaling and medulloblastoma development. EMBO J, 35 (13), pp. 1400-1416. | Citations: 12 (European Pubmed Central) | Show Abstract | Read more

Skp1-Cul1-F-box protein (SCF) ubiquitin ligases direct cell survival decisions by controlling protein ubiquitylation and degradation. Sufu (Suppressor of fused) is a central regulator of Hh (Hedgehog) signaling and acts as a tumor suppressor by maintaining the Gli (Glioma-associated oncogene homolog) transcription factors inactive. Although Sufu has a pivotal role in Hh signaling, the players involved in controlling Sufu levels and their role in tumor growth are unknown. Here, we show that Fbxl17 (F-box and leucine-rich repeat protein 17) targets Sufu for proteolysis in the nucleus. The ubiquitylation of Sufu, mediated by Fbxl17, allows the release of Gli1 from Sufu for proper Hh signal transduction. Depletion of Fbxl17 leads to defective Hh signaling associated with an impaired cancer cell proliferation and medulloblastoma tumor growth. Furthermore, we identify a mutation in Sufu, occurring in medulloblastoma of patients with Gorlin syndrome, which increases Sufu turnover through Fbxl17-mediated polyubiquitylation and leads to a sustained Hh signaling activation. In summary, our findings reveal Fbxl17 as a novel regulator of Hh pathway and highlight the perturbation of the Fbxl17-Sufu axis in the pathogenesis of medulloblastoma.

Volkmar N, Fenech E, Christianson JC. 2016. New MAPS for misfolded proteins. Nat Cell Biol, 18 (7), pp. 724-726. | Citations: 4 (Web of Science Lite) | Show Abstract | Read more

Clearing misfolded proteins from the cytoplasm is essential to maintain cellular homeostasis. Now, a parallel clearance system is described that uses the deubiquitylase USP19 to enable secretion of misfolded cytoplasmic proteins when conventional proteasomal degradation is compromised. Misfolding-associated protein secretion (MAPS) has important implications for protein quality control and prion-like transmission.

Becker PW, Sacilotto N, Nornes S, Neal A, Thomas MO, Liu K, Preece C, Ratnayaka I, Davies B, Bou-Gharios G, De Val S. 2016. An Intronic Flk1 Enhancer Directs Arterial-Specific Expression via RBPJ-Mediated Venous Repression. Arterioscler Thromb Vasc Biol, 36 (6), pp. 1209-1219. | Citations: 6 (European Pubmed Central) | Show Abstract | Read more

OBJECTIVE: The vascular endothelial growth factor (VEGF) receptor Flk1 is essential for vascular development, but the signaling and transcriptional pathways by which its expression is regulated in endothelial cells remain unclear. Although previous studies have identified 2 Flk1 regulatory enhancers, these are dispensable for Flk1 expression, indicating that additional enhancers contribute to Flk1 regulation in endothelial cells. In the present study, we sought to identify Flk1 enhancers contributing to expression in endothelial cells. APPROACH AND RESULTS: A region of the 10th intron of the Flk1 gene (Flk1in10) was identified as a putative enhancer and tested in mouse and zebrafish transgenic models. This region robustly directed reporter gene expression in arterial endothelial cells. Using a combination of targeted mutagenesis of transcription factor-binding sites and gene silencing of transcription factors, we found that Gata and Ets factors are required for Flk1in10 enhancer activity in all endothelial cells. Furthermore, we showed that activity of the Flk1in10 enhancer is restricted to arteries through repression of gene expression in venous endothelial cells by the Notch pathway transcriptional regulator Rbpj. CONCLUSIONS: This study demonstrates a novel mechanism of arterial-venous identity acquisition, indicates a direct link between the Notch and VEGF signaling pathways, and illustrates how cis-regulatory diversity permits differential expression outcomes from a limited repertoire of transcriptional regulators.

Total publications on this page: 100

Total citations for publications on this page: 779