Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Advances in imaging techniques enable high resolution 3D visualisation of vascular networks over time and reveal abnormal structural features such as twists and loops. Quantitative descriptors of vascular networks are an active area of research and often focus on a single spatial resolution. Simultaneously, topological data analysis (TDA), the mathematical field that studies `shape' of data, has expanded from theory to applications through advances in computation and machine learning integration. Fully characterising the geometric, spatial and temporal tissue organisation is challenging, and its quantification is necessary to assess treatment effects. Here we showcase TDA to analyse intravital and ultramicroscopy imaging modalities and quantify spatio-temporal variation of twists, loops, and avascular regions (voids) in 3D vascular networks. We propose two topological lenses to study vasculature which capture inherent multi-scale organisation and vessel connectivity invisible to existing methods. This topological approach validates and quantifies known qualitative trends; specifically, dynamic changes in tortuosity and loops in response to antibodies that modulate vessel sprouting. Using these topological descriptors, we show further how radiotherapy alters the structure of tumour vasculature. Topological data analysis offers great potential for relating the form and function of vascular networks, and proposing novel biomarkers for tumour progression and treatment.


Journal article

Publication Date



q-bio.QM, q-bio.QM, math.AT, q-bio.TO