Contrastive Representations for Continual Learning of Fine-Grained Histology Images
Chakraborti T., Gleeson F., Rittscher J.
We show how a simple autoencoder based deep network with a contrastive loss can effectively learn representations in a continual/incremental manner with limited labelling. This is of particular interest to the biomedical imaging research community, for whom the visual task is often a binary decision (healthy vs. disease) with limited quantity data and costly labelling. For such applications, the proposed method provides a light-weight option of 1) representing patterns with relatively few training samples using a novel collaborative contrastive loss function 2) update the autoencoder based deep network in an unsupervised fashion for continual learning for new incoming data. We overcome the drawbacks of existing methods through planned technical design, and demonstrate the efficacy of the proposed method on three histology image classification tasks (lung, colon, breast cancer) with SOTA results.