Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Background Countries around the world have introduced travel restrictions to reduce SARS-CoV-2 transmission. As vaccines are gradually rolled out, attention has turned to when travel restrictions and other non-pharmaceutical interventions (NPIs) can be relaxed. Methods Using SARS-CoV-2 as a case study, we develop a mathematical branching process model to assess the risk that, following the removal of NPIs, cases arriving in low prevalence settings initiate a local outbreak. Our model accounts for changes in background population immunity due to vaccination. We consider two locations with low prevalence in which the vaccine rollout has progressed quickly – specifically, the Isle of Man (a British crown dependency in the Irish Sea) and the country of Israel. Results We show that the outbreak risk is unlikely to be eliminated completely when travel restrictions and other NPIs are removed. This general result is the most important finding of this study, rather than exact quantitative outbreak risk estimates in different locations. It holds even once vaccine programmes are completed. Key factors underlying this result are the potential for transmission even following vaccination, incomplete vaccine uptake, and the recent emergence of SARS-CoV-2 variants with increased transmissibility. Conclusions Combined, the factors described above suggest that, when travel restrictions are relaxed, it may still be necessary to implement surveillance of incoming passengers to identify infected individuals quickly. This measure, as well as tracing and testing (and/or isolating) contacts of detected infected passengers, remains useful to suppress potential outbreaks while global case numbers are high.

Original publication

DOI

10.1038/s43856-021-00038-8

Type

Journal article

Journal

Communications Medicine

Publisher

Springer Science and Business Media LLC

Publication Date

12/2021

Volume

1