Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The MEK/ERK signalling pathway is involved in cell division, cell specialisation, survival and cell death (Shaul and Seger in Biochim Biophys Acta (BBA)-Mol Cell Res 1773(8):1213-1226, 2007). Here we study a polynomial dynamical system describing the dynamics of MEK/ERK proposed by Yeung et al. (Curr Biol 2019, https://doi.org/10.1016/j.cub.2019.12.052 ) with their experimental setup, data and known biological information. The experimental dataset is a time-course of ERK measurements in different phosphorylation states following activation of either wild-type MEK or MEK mutations associated with cancer or developmental defects. We demonstrate how methods from computational algebraic geometry, differential algebra, Bayesian statistics and computational algebraic topology can inform the model reduction, identification and parameter inference of MEK variants, respectively. Throughout, we show how this algebraic viewpoint offers a rigorous and systematic analysis of such models.

Original publication

DOI

10.1007/s11538-022-01088-2

Type

Journal article

Journal

Bulletin of mathematical biology

Publication Date

23/10/2022

Volume

84

Addresses

Mathematical Institute, University of Oxford, Oxford, UK. lewis.marsh@maths.ox.ac.uk.