Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We develop a deterministic mathematical model to describe the way in which polymers bind to DNA by considering the dynamics of the gap distribution that forms when polymers bind to a DNA plasmid. In so doing, we generalize existing theory to account for overlaps and binding cooperativity whereby the polymer binding rate depends on the size of the overlap. The proposed mean-field models are then solved using a combination of numerical and asymptotic methods. We find that overlaps lead to higher coverage and hence higher charge neutralizations, results which are more in line with recent experimental observations. Our work has applications to gene therapy where polymers are used to neutralize the negative charges of the DNA phosphate backbone, allowing condensation prior to delivery into the nucleus of an abnormal cell. © 2006 The American Physical Society.

Original publication




Journal article


Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Publication Date