Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Inflammatory and innate immune signaling in response to recognition of pathogens is essential for immunity and host survival. However, deregulation may lead to detrimental pathologies including immunodeficiency, inflammatory diseases, and cancer. Inhibitor of apoptosis (IAP) proteins have emerged as important regulators of innate immune signaling downstream of pattern recognition receptors (PRRs) such as Toll-like receptor 4 (TLR4), the nucleotide-binding oligomerization domain 1 (NOD1) and NOD2 receptors, and the retinoic acid-inducible gene (RIG)-I receptor. Recent evidence suggests that cIAP1, cIAP2, and XIAP facilitate ubiquitin-dependent signaling activated by these PRRs and mediate activation of nuclear factor-kappa B (NF-kappaB) transcription factors as well as the MAP kinases p38 and JNK. Here, we review the current understanding of IAP-mediated PRR signaling and how IAP proteins might present as promising targets for anti-inflammatory therapies in PRR-dependent inflammatory diseases including Crohn's disease, Blau syndrome, and septic shock.


Journal article


Discovery medicine

Publication Date





221 - 231


Ubiquitin Signaling Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark.


Animals, Humans, Inflammation, NF-kappa B, Signal Transduction, Inhibitor of Apoptosis Proteins, Toll-Like Receptor 4, Nod2 Signaling Adaptor Protein, Immunity, Innate