Posttranslational modifications of p27kip1 determine its binding specificity to different cyclins and cyclin-dependent kinases in vivo
Zhang W., Bergamaschi D., Jin B., Lu X.
<jats:title>Abstract</jats:title><jats:p>Using 2-dimensional gel electrophoresis (2D-gel) analysis, we show here that cell-cycle entry is associated with a significant increase in p27kip1 phosphorylation in human primary B cells. A similar pattern of increase in p27kip1 phosphorylation was also seen in 2 fast-growing tumor cell lines, Burkitt lymphoma cell line BL40 and breast carcinoma cell line Cal51, where inactive p27kip1 is expressed at high levels. Detailed analysis revealed for the first time that different cyclins and cyclin-dependent kinases (cdk's) interact with distinct posttranslationally modified isoforms of p27kip1 in vivo. Cyclin E but not cyclin A selectively interacts with phosphorylated p27kip1 isoforms, while cyclin D1 and D2 favor unphosphorylated p27kip1 isoforms in vivo. Interestingly, cyclin D3 and cdk4 selectively interact with phosphorylated p27kip1 in BL40 cells. Among all D-type cyclin/cdk4 and cdk6 complexes, cyclin D3/cdk4 is most active in sequestering the inhibitory activity of p27kip1 in vitro in a cyclinE/cdk2 kinase assay. This novel feature of the binding specificity of p27kip1 to cyclins and cdk's in vivo is interpreted in the context of overexpression of cyclin D3 in the presence of high levels of p27kip1 in human B-cell lymphomas with adverse clinical outcome.</jats:p>