Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractA fundamental variable in culture medium is its pH, which must be controlled by an appropriately formulated buffering regime, since biological processes are exquisitely sensitive to acid–base chemistry. Although awareness of the importance of pH is fostered early in the training of researchers, there are no consensus guidelines for best practice in managing pH in cell cultures, and reporting standards relating to pH are typically inadequate. Furthermore, many laboratories adopt bespoke approaches to controlling pH, some of which inadvertently produce artefacts that increase noise, compromise reproducibility or lead to the misinterpretation of data. Here, we use real-time measurements of medium pH and intracellular pH under live-cell culture conditions to describe the effects of various buffering regimes, including physiological CO2/HCO3− and non-volatile buffers (e.g. HEPES). We highlight those cases that result in poor control, non-intuitive outcomes and erroneous inferences. To improve data reproducibility, we propose guidelines for controlling pH in culture systems.

Original publication




Journal article


Communications Biology


Springer Science and Business Media LLC

Publication Date