Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A key step in the tissue engineering of articular cartilage is the chondrogenic differentiation of mesenchymal stem cells (MSCs) into chondrocytes (native cartilage cells). Chondrogenesis is regulated by transforming growth factor- β (TGF- β), a short-lived cytokine whose effect is prolonged by storage in the extracellular matrix. Tissue engineering applications aim to maximise the yield of differentiated MSCs. Recent experiments involve seeding a hydrogel construct with a layer of MSCs lying below a layer of chondrocytes, stimulating the seeded cells in the construct from above with exogenous TGF- β and then culturing it in vitro. To investigate the efficacy of this strategy, we develop a mathematical model to describe the interactions between MSCs, chondrocytes and TGF- β. Using this model, we investigate the effect of varying the initial concentration of TGF- β, the initial densities of the MSCs and chondrocytes, and the relative depths of the two layers on the long-time composition of the tissue construct.

Original publication

DOI

10.1177/2041731419842431

Type

Journal article

Journal

Journal of Tissue Engineering

Publisher

SAGE Publications

Publication Date

01/2019

Volume

10

Pages

204173141984243 - 204173141984243