Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Antibody repertoires are known to be shaped by selection for antigen binding. Unexpectedly, we now show that selection also acts on a non-antigen-binding antibody region: the heavy-chain variable (VH)-encoded "elbow" between variable and constant domains. By sequencing 2.8 million recombined heavy-chain genes from immature and mature B-cell subsets in mice, we demonstrate a striking gradient in VH gene use as pre-B cells mature into follicular and then into marginal zone B cells. Cells whose antibodies use VH genes that encode a more flexible elbow are more likely to mature. This effect is distinct from, and exceeds in magnitude, previously described maturation-associated changes in heavy-chain complementarity determining region 3, a key antigen-binding region, which arise from junctional diversity rather than differential VH gene use. Thus, deep sequencing reveals a previously unidentified mode of B-cell selection.

Original publication




Journal article


Proc Natl Acad Sci U S A

Publication Date





E2622 - E2629


development, immunomics, principal component analysis, Animals, B-Lymphocytes, Complementarity Determining Regions, Female, High-Throughput Nucleotide Sequencing, Immunoglobulin Heavy Chains, Mice