Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2017 IEEE. A combined 2D microfluidic-microarray high throughput approach is reported to identify universal bacterial capturing ligands that can be tethered on the surface of 3D sponges fabricated by different methods for concentrating of bacterial targets in diagnosis devices. The developed platform allows for the first time the simultaneous monitoring of various ligands' affinities to different bacteria species in a dynamic condition in vitro. Moreover, it has been feasible to recognize the effect of steric hindrance on the function of capturing motifs through immobilizing spacer molecules with different lengths between the solid surface and ligands. 3D sponges and micropillars are modified with the most potent capturing molecule to assess their bacterial capturing in real blood samples. Next, the 3D structures are placed into a chip with an immense potential to recognize bacteria through imaging and fluorescence intensity concept.

Original publication

DOI

10.1109/MEMSYS.2017.7863437

Type

Conference paper

Publication Date

23/02/2017

Pages

440 - 443