Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Frameshifting mutations (-1/+2) of the calreticulin (CALR) gene are responsible for the development of essential thrombocythemia (ET) and primary myelofibrosis (PMF). The mutant CALR proteins activate the thrombopoietin receptor (TpoR) inducing cytokine-independent megakaryocyte progenitor proliferation. Here, we generated via CRISPR/Cas9 technology two knock-in mouse models that are heterozygous for a type-I murine Calr mutation. These mice exhibit an ET phenotype with elevated circulating platelets compared with wild-type controls, consistent with our previous results showing that murine CALR mutants activate TpoR. We also show that the mutant CALR proteins can be detected in plasma. The phenotype of Calr del52 is transplantable, and the Calr mutated hematopoietic cells have a slow-rising advantage over wild-type hematopoiesis. Importantly, a homozygous state of a type-1 Calr mutation is lethal at a late embryonic development stage, showing narrowed ventricular myocardium walls, similar to the murine Calr knockout phenotype, pointing to the C terminus of CALR as crucial for heart development.

Original publication

DOI

10.1038/s41375-019-0538-1

Type

Journal article

Journal

Leukemia

Publication Date

02/2020

Volume

34

Pages

510 - 521

Addresses

Ludwig Institute for Cancer Research, Brussels, Belgium.

Keywords

Heart, Animals, Mice, Thrombocytosis, Calreticulin, Hematopoiesis, Homozygote, Frameshift Mutation, Exons, Female, Male, Receptors, Thrombopoietin, Thrombocythemia, Essential, Primary Myelofibrosis, CRISPR-Cas Systems