Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

An emerging hallmark of many human diseases is transcription of typically silenced repetitive DNA containing pathogen-associated molecular patterns (PAMPs). These PAMPs engage the innate immune system via pattern recognition receptors (PRRs)-a phenomenon known as viral mimicry. We propose a statistical physics framework to quantify viral mimicry by measuring "selective forces" that enrich PAMPs compared to a genome-wide reference distribution. We validate our predictions by identifying repeats that bind different PRRs and show potential viral mimics in different repeat families across eukaryotic genomes, suggesting shared mechanisms drive emergence and retention. We propose two non-exclusive evolutionary hypotheses. The first "repeat-centric" hypothesis posits PAMPs are integral to the repeat life cycle and are therefore enriched as they mediate repeat expansion. The second "organism-centric" hypothesis proposes viral mimicry functions as a cell-intrinsic feedback mechanism for sensing and reacting to transcriptional dysregulation, which provides a selective pressure to maintain PAMPs in genomes.

Original publication

DOI

10.1016/j.xgen.2025.101011

Type

Journal article

Journal

Cell genomics

Publication Date

09/2025

Addresses

School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Natural Sciences, Department of Bioscience, TU Munich, Garching, Germany. Electronic address: psulc@asu.edu.